欠采样
压缩传感
稀疏逼近
计算机科学
人工智能
计算机视觉
混叠
曲线波变换
阈值
模式识别(心理学)
迭代重建
小波
算法
小波变换
图像(数学)
作者
Michael Lustig,David L. Donoho,John M. Pauly
摘要
Abstract The sparsity which is implicit in MR images is exploited to significantly undersample k ‐space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial finite‐differences or their wavelet coefficients. According to the recently developed mathematical theory of compressed‐sensing, images with a sparse representation can be recovered from randomly undersampled k ‐space data, provided an appropriate nonlinear recovery scheme is used. Intuitively, artifacts due to random undersampling add as noise‐like interference. In the sparse transform domain the significant coefficients stand out above the interference. A nonlinear thresholding scheme can recover the sparse coefficients, effectively recovering the image itself. In this article, practical incoherent undersampling schemes are developed and analyzed by means of their aliasing interference. Incoherence is introduced by pseudo‐random variable‐density undersampling of phase‐encodes. The reconstruction is performed by minimizing the ℓ 1 norm of a transformed image, subject to data fidelity constraints. Examples demonstrate improved spatial resolution and accelerated acquisition for multislice fast spin‐echo brain imaging and 3D contrast enhanced angiography. Magn Reson Med, 2007. © 2007 Wiley‐Liss, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI