胰腺导管腺癌
医学
肿瘤科
内科学
H&E染色
辅助化疗
放射科
佐剂
胰腺癌
免疫组织化学
病理
总体生存率
化疗
腺癌
生存分析
数字化病理学
活检
辅助治疗
存活率
预测模型
胰腺
临床实习
接收机工作特性
签名(拓扑)
切除术
特征(语言学)
外科切除术
新辅助治疗
免疫系统
作者
Qiangda Chen,Zhihang Xu,Yiping Zou,Zhenlai Jiang,Yecheng Li,T. He,Hanlin Yin,Jiali Li,Yanfei An,Jiande Han,Yuqi Xie,Wei Gan,Yaolin Xu,Wenquan Wang,Junyi He,Haibo Wang,Wenchuan Wu,Zhenyu Ye,Wenhui Lou,Jihui Hao
标识
DOI:10.1002/advs.202515952
摘要
ABSTRACT Histopathological hematoxylin and eosin (H&E) slides contain valuable prognostic information for pancreatic ductal adenocarcinoma (PDAC), yet systematic feature extraction remains challenging. This multi‐center study developed and validated an automated prognostic model using deep learning on digitized whole‐slide images from 873 PDAC patients with surgical resection across three academic centers. The CrossFormer architecture achieved superior performance in external validation (area under the curve [AUC] = 0.774), significantly outperforming ResNet‐18 (AUC = 0.716), ResNet‐50 (AUC = 0.737), and DenseNet‐121 (AUC = 0.729). Gradient‐weighted Class Activation Mapping identified key prognostic features including desmoplastic stroma, high nuclear‐to‐cytoplasmic ratio, tumor necrosis, and immune cell infiltration. The pathomics signature effectively stratified patients into low‐risk and high‐risk groups with significant survival differences ( p < 0.001). Critically, carbohydrate antigen 19‐9 (CA19‐9) retained prognostic value only in low‐risk patients (hazard ratio [HR] = 2.70, p < 0.001) but not in high‐risk patients (HR = 0.998, p = 0.990). High‐risk patients derived substantial benefit from adjuvant chemotherapy (HR = 0.56, p = 0.038), whereas low‐risk patients showed no significant benefit (HR = 0.83, p = 0.562). These findings provide actionable clinical insights: treatment intensification for high‐risk patients and CA19‐9‐guided monitoring for low‐risk patients. This validated, interpretable model transforms routine H&E slides into quantitative prognostic tools, enabling personalized treatment strategies without additional testing costs.
科研通智能强力驱动
Strongly Powered by AbleSci AI