常微分方程
数学
有界函数
指数稳定性
李雅普诺夫函数
应用数学
理论(学习稳定性)
人口
控制理论(社会学)
偏微分方程
稳定性理论
流行病模型
数学优化
最优控制
人口模型
微分方程
控制器(灌溉)
Lyapunov稳定性
霍乱疫苗
控制(管理)
结算(财务)
差速器(机械装置)
标量(数学)
时滞微分方程
计算机科学
霍乱
渐近分析
芯(光纤)
系统动力学
数值分析
基础(线性代数)
作者
Asaf Khan,Ikramul Haq,Zhiming Li
标识
DOI:10.1142/s1793524525501669
摘要
This study examines an age-structured Cholera epidemic model that integrates both hyperinfectious and non-hyperinfectious strains of Vibrio cholera, while accounting for the immigration impact of the infected population. The model comprises a first-order partial differential equation in conjunction with a system of three ordinary differential equations. A rigorous analytical study, based on semi-group theory, confirms the existence of a unique, positive and bounded solution. We further establish the existence and global asymptotic stability of a unique endemic equilibrium. The study depends on core concepts such as uniform persistence and asymptotic smoothness, which assist the establishment of a suitable Lyapunov functional. A vaccination strategy is employed as a control variable, leading to the formulation and settlement of an optimal control problem utilizing the generalized Pontryagin’s Maximum Principle. We perform numerical simulations by using Wendland’s Compactly Supported Radial Basis Functions together with the finite difference method of characteristics. The findings validate the theoretical results in guiding the system toward equilibrium and confirm the effectiveness of the proposed control mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI