Novel trajectory privacy protection method against prediction attacks

可预测性 计算机科学 弹道 均方误差 数据挖掘 推论 人工智能 统计 数学 天文 物理
作者
Shuyuan Qiu,Dechang Pi,Yanxue Wang,Yufei Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 118870-118870 被引量:22
标识
DOI:10.1016/j.eswa.2022.118870
摘要

When the public uses Location-based Services (LBSs), their location information is constantly exposed. Owing to the spatiotemporal correlation of trajectories, it is easy for attackers to use historical trajectories and background knowledge to predict future locations of target users. We refer to this type of inference attack as a trajectory prediction attack. To address such potential but threatening attacks in a continuous location query, we propose a novel trajectory privacy protection method. The proposed algorithm aims to generate an indistinguishable perturbed location that is robust to the prediction attack, wherein the user’s real location can be replaced by a perturbed location when submitted to an untrusted server. First, a hidden Markov model-based trajectory prediction mechanism is proposed to simulate predictive attacks and compute the predictability of positions before the trajectory is released. Second, the w sliding window mechanism is designed to dynamically adjust the privacy protection degree of each location point in the trajectory according to the predictability of the location and privacy needs of users. Finally, we propose a bounded noise-adding algorithm based on the Laplace mechanism to improve the usability of data. In our experiments, mutual information, trajectory root-mean-square error, query error, and root-mean-square predictability were used as evaluation criteria, and the performance of the proposed method was comprehensively evaluated. The results show that our algorithm can reduce the trajectory predictability to 0.21 without reducing data availability, which is effective against prediction attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
BW打工仔完成签到,获得积分20
1秒前
1秒前
kwai完成签到,获得积分20
1秒前
1秒前
2秒前
馆长应助潇涯采纳,获得30
3秒前
Vvvnnnaa1完成签到,获得积分10
3秒前
3秒前
yzhilson发布了新的文献求助10
4秒前
苹果问晴完成签到,获得积分10
5秒前
jenningseastera应助blank采纳,获得10
5秒前
wanci应助欢呼的汉堡采纳,获得10
7秒前
7秒前
刘雪晴发布了新的文献求助10
7秒前
9秒前
whoknowsname发布了新的文献求助10
10秒前
11秒前
爆米花应助大气的山彤采纳,获得10
11秒前
AARON发布了新的文献求助10
12秒前
直率的惜寒完成签到,获得积分10
13秒前
王王王完成签到,获得积分10
13秒前
li发布了新的文献求助10
14秒前
李惊韬发布了新的文献求助10
15秒前
浮游应助wangyl采纳,获得10
15秒前
王武聪发布了新的文献求助10
16秒前
酷波er应助guopeng采纳,获得10
17秒前
为医消得人憔悴完成签到,获得积分10
18秒前
科研通AI5应助天天采纳,获得10
18秒前
负责小蜜蜂完成签到,获得积分10
19秒前
核桃应助wy.he采纳,获得10
19秒前
yuan完成签到,获得积分10
20秒前
善学以致用应助qww采纳,获得10
20秒前
科研通AI2S应助yanganqi采纳,获得10
21秒前
馆长应助文静的如波采纳,获得30
21秒前
present完成签到,获得积分10
23秒前
王舜富完成签到,获得积分20
23秒前
FashionBoy应助王武聪采纳,获得10
23秒前
华仔应助迷人的山灵采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538095
求助须知:如何正确求助?哪些是违规求助? 3972801
关于积分的说明 12306882
捐赠科研通 3639551
什么是DOI,文献DOI怎么找? 2003944
邀请新用户注册赠送积分活动 1039353
科研通“疑难数据库(出版商)”最低求助积分说明 928718