A total variation prior unrolling approach for computed tomography reconstruction

计算机科学 迭代重建 卷积神经网络 人工智能 特征(语言学) 循环展开 深度学习 人工神经网络 模式识别(心理学) 算法 计算机视觉 哲学 语言学 编译程序 程序设计语言
作者
Pengcheng Zhang,Shuhui Ren,Yi Liu,Zhiguo Gui,Hong Shangguan,Yanling Wang,Shu Hu,Yang Chen
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 2816-2834 被引量:2
标识
DOI:10.1002/mp.16307
摘要

Abstract Background With the rapid development of deep learning technology, deep neural networks can effectively enhance the performance of computed tomography (CT) reconstructions. One kind of commonly used method to construct CT reconstruction networks is to unroll the conventional iterative reconstruction (IR) methods to convolutional neural networks (CNNs). However, most unrolling methods primarily unroll the fidelity term of IR methods to CNNs, without unrolling the prior terms. The prior terms are always directly replaced by neural networks. Purpose In conventional IR methods, the prior terms play a vital role in improving the visual quality of reconstructed images. Unrolling the hand‐crafted prior terms to CNNs may provide a more specialized unrolling approach to further improve the performance of CT reconstruction. In this work, a primal‐dual network (PD‐Net) was proposed by unrolling both the data fidelity term and the total variation (TV) prior term, which effectively preserves the image edges and textures in the reconstructed images. Methods By further deriving the Chambolle–Pock (CP) algorithm instance for CT reconstruction, we discovered that the TV prior updates the reconstructed images with its divergences in each iteration of the solution process. Based on this discovery, CNNs were applied to yield the divergences of the feature maps for the reconstructed image generated in each iteration. Additionally, a loss function was applied to the predicted divergences of the reconstructed image to guarantee that the CNNs’ results were the divergences of the corresponding feature maps in the iteration. In this manner, the proposed CNNs seem to play the same roles in the PD‐Net as the TV prior in the IR methods. Thus, the TV prior in the CP algorithm instance can be directly unrolled to CNNs. Results The datasets from the Low‐Dose CT Image and Projection Data and the Piglet dataset were employed to assess the effectiveness of our proposed PD‐Net. Compared with conventional CT reconstruction methods, our proposed method effectively preserves the structural and textural information in reference to ground truth. Conclusions The experimental results show that our proposed PD‐Net framework is feasible for the implementation of CT reconstruction tasks. Owing to the promising results yielded by our proposed neural network, this study is intended to inspire further development of unrolling approaches by enabling the direct unrolling of hand‐crafted prior terms to CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
cdercder应助cyy采纳,获得10
4秒前
4秒前
flash完成签到,获得积分10
4秒前
小蘑菇应助欧阳采纳,获得10
6秒前
TE发布了新的文献求助10
7秒前
斯文远望完成签到,获得积分10
8秒前
清秀豪英发布了新的文献求助10
8秒前
9秒前
梦追阳完成签到 ,获得积分10
9秒前
喜欢玩辅助完成签到,获得积分10
12秒前
桃博完成签到,获得积分10
12秒前
tourist585完成签到,获得积分10
12秒前
党弛完成签到,获得积分10
13秒前
梦追阳关注了科研通微信公众号
13秒前
我说苏卡你说不列完成签到,获得积分10
13秒前
大橘完成签到 ,获得积分10
13秒前
mm完成签到,获得积分10
14秒前
顺心的雨真完成签到,获得积分10
14秒前
科研通AI5应助虚幻的玉米采纳,获得10
15秒前
神明发布了新的文献求助30
16秒前
大模型应助cyy采纳,获得10
17秒前
18秒前
18秒前
yc完成签到 ,获得积分10
19秒前
20秒前
研友_LwlAgn发布了新的文献求助10
23秒前
Ava应助阿云采纳,获得10
25秒前
guan发布了新的文献求助10
26秒前
28秒前
amupf完成签到 ,获得积分10
28秒前
28秒前
29秒前
力劈华山完成签到,获得积分10
30秒前
搞怪雁风发布了新的文献求助10
31秒前
32秒前
32秒前
残月初升完成签到,获得积分10
33秒前
唯梦发布了新的文献求助10
33秒前
李爱国应助CardiB采纳,获得10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237387
捐赠科研通 3043770
什么是DOI,文献DOI怎么找? 1670643
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130