Voltage control of DC–DC converters through direct control of power switches using reinforcement learning

计算机科学 强化学习 控制理论(社会学) 占空比 稳健性(进化) 转换器 脉冲宽度调制 电压 控制(管理) 人工智能 工程类 生物化学 基因 电气工程 化学
作者
Omid Zandi,Javad Poshtan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:120: 105833-105833 被引量:23
标识
DOI:10.1016/j.engappai.2023.105833
摘要

It is well known that unmodeled dynamics and uncertainties can deteriorate the performance of classical controllers. To resolve this problem, there is growing popularity in using the capabilities of Artificial Intelligence (AI) algorithms, especially Reinforcement Learning (RL) in power systems, because it is a promising adaptive model-free control strategy that can take optimal decisions in unknown environments (dynamics). For this reason, in this paper, two state-of-the-art RL agents, namely Deep Q-Network (DQN) and Deep Deterministic Policy Gradient (DDPG), are used for voltage control of a DC–DC buck converter, and their performance is reported compared with other classical controllers such as Model Predictive Control (MPC) and Sliding Mode Control (SMC). The DQN agent directly controls the power switches of converters. In other words, based on the current condition of the converter, the agent decides whether or not to close the power switches. On the other hand, the DDPG agent and the other mentioned traditional controllers manipulate the duty cycle of a Pulse Width Modulation (PWM) signal to adjust the output voltage of the converter at desired setpoints. According to experimental results, both RL agents outperform the classical controllers in terms of transient response error and robustness against uncertainties. Also, with regard to computational costs and learning rate among RL-based controllers, the DQN agent can learn more from a single interaction with fewer computations because of its simpler structure and direct control of the switches of the converter. Additionally, one of the most important advantages of the RL-based controllers is that they can be applied to various configurations of DC–DC​ converters like buck, boost, and buck-boost converters, provided that it is retrained for the new environments. Finally, the number of transitions in the semiconductor switches of the converter reduces appreciably by using the DQN agent, which certainly prolongs their longevity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
1秒前
认真的沛容完成签到 ,获得积分10
1秒前
11发布了新的文献求助30
1秒前
李健的粉丝团团长应助cxy采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
4秒前
ZZL应助科研通管家采纳,获得20
4秒前
orixero应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得30
4秒前
无花果应助科研通管家采纳,获得30
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
圆锥香蕉应助科研通管家采纳,获得40
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
JCao727完成签到,获得积分10
5秒前
5秒前
糊涂的电脑完成签到 ,获得积分10
5秒前
5秒前
6秒前
hh完成签到 ,获得积分10
9秒前
简单慕卉完成签到,获得积分20
10秒前
10秒前
邓怡发布了新的文献求助10
11秒前
13秒前
Orange应助动听千风采纳,获得10
15秒前
cxy发布了新的文献求助10
15秒前
16秒前
快乐的胖子应助kkk采纳,获得20
20秒前
21秒前
22秒前
23秒前
所所应助沉静妙菡采纳,获得10
26秒前
D-D发布了新的文献求助10
27秒前
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965102
求助须知:如何正确求助?哪些是违规求助? 3510413
关于积分的说明 11153130
捐赠科研通 3244755
什么是DOI,文献DOI怎么找? 1792550
邀请新用户注册赠送积分活动 873918
科研通“疑难数据库(出版商)”最低求助积分说明 804024