已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Voltage control of DC–DC converters through direct control of power switches using reinforcement learning

计算机科学 强化学习 控制理论(社会学) 占空比 稳健性(进化) 转换器 脉冲宽度调制 电压 控制(管理) 人工智能 工程类 生物化学 基因 电气工程 化学
作者
Omid Zandi,Javad Poshtan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105833-105833 被引量:37
标识
DOI:10.1016/j.engappai.2023.105833
摘要

It is well known that unmodeled dynamics and uncertainties can deteriorate the performance of classical controllers. To resolve this problem, there is growing popularity in using the capabilities of Artificial Intelligence (AI) algorithms, especially Reinforcement Learning (RL) in power systems, because it is a promising adaptive model-free control strategy that can take optimal decisions in unknown environments (dynamics). For this reason, in this paper, two state-of-the-art RL agents, namely Deep Q-Network (DQN) and Deep Deterministic Policy Gradient (DDPG), are used for voltage control of a DC–DC buck converter, and their performance is reported compared with other classical controllers such as Model Predictive Control (MPC) and Sliding Mode Control (SMC). The DQN agent directly controls the power switches of converters. In other words, based on the current condition of the converter, the agent decides whether or not to close the power switches. On the other hand, the DDPG agent and the other mentioned traditional controllers manipulate the duty cycle of a Pulse Width Modulation (PWM) signal to adjust the output voltage of the converter at desired setpoints. According to experimental results, both RL agents outperform the classical controllers in terms of transient response error and robustness against uncertainties. Also, with regard to computational costs and learning rate among RL-based controllers, the DQN agent can learn more from a single interaction with fewer computations because of its simpler structure and direct control of the switches of the converter. Additionally, one of the most important advantages of the RL-based controllers is that they can be applied to various configurations of DC–DC​ converters like buck, boost, and buck-boost converters, provided that it is retrained for the new environments. Finally, the number of transitions in the semiconductor switches of the converter reduces appreciably by using the DQN agent, which certainly prolongs their longevity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MrTStar完成签到 ,获得积分10
刚刚
和谐天川完成签到 ,获得积分10
1秒前
老仙翁完成签到,获得积分10
2秒前
3秒前
shinble发布了新的文献求助10
3秒前
李健的小迷弟应助zhangfan采纳,获得10
4秒前
科研通AI6应助北北北采纳,获得10
4秒前
CodeCraft应助aaaaaa采纳,获得10
4秒前
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
6秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得80
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
Dryu发布了新的文献求助10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Taxwitted应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
yiluyouni发布了新的文献求助10
9秒前
小小应助重要问筠采纳,获得50
10秒前
10秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454635
求助须知:如何正确求助?哪些是违规求助? 4561964
关于积分的说明 14284045
捐赠科研通 4485792
什么是DOI,文献DOI怎么找? 2457038
邀请新用户注册赠送积分活动 1447677
关于科研通互助平台的介绍 1422913