Safe Deep Reinforcement Learning for Microgrid Energy Management in Distribution Networks With Leveraged Spatial–Temporal Perception

强化学习 计算机科学 微电网 可扩展性 背景(考古学) 分布式计算 人工智能 机器学习 控制(管理) 数据库 生物 古生物学
作者
Yujian Ye,Hongru Wang,Peiling Chen,Yi Tang,Goran Štrbac
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3759-3775 被引量:29
标识
DOI:10.1109/tsg.2023.3243170
摘要

Microgrids (MG) have recently attracted great interest as an effective solution to the challenging problem of distributed energy resources' management in distribution networks. In this context, despite deep reinforcement learning (DRL) constitutes a well-suited model-free and data-driven methodological framework, its application to MG energy management is still challenging, driven by their limitations on environment status perception and constraint satisfaction. In this paper, the MG energy management problem is formalized as a Constrained Markov Decision Process, and is solved with the state-of-the-art interior-point policy optimization (IPO) method. In contrast to conventional DRL approaches, IPO facilitates efficient learning in multi-dimensional, continuous state and action spaces, while promising satisfaction of complex network constraints of the distribution network. The generalization capability of IPO is further enhanced through the extraction of spatial-temporal correlation features from original MG operating status, combining the strength of edge conditioned convolutional network and long short-term memory network. Case studies based on an IEEE 15-bus and 123-bus test feeders with real-world data demonstrate the superior performance of the proposed method in improving MG cost effectiveness, safeguarding the secure operation of the network and uncertainty adaptability, through performance benchmarking against model-based and DRL-based baseline methods. Finally, case studies also analyze the computational and scalability performance of proposed and baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大猪头发布了新的文献求助10
1秒前
1秒前
qcrcherry完成签到,获得积分10
2秒前
4秒前
美人骨发布了新的文献求助10
4秒前
4秒前
5秒前
康康XY发布了新的文献求助10
5秒前
AmyHu完成签到,获得积分10
5秒前
刘旭阳发布了新的文献求助10
7秒前
lhy发布了新的文献求助10
7秒前
xbt发布了新的文献求助30
8秒前
9秒前
华仔应助JarodT采纳,获得10
9秒前
天天快乐应助wjadejing采纳,获得10
10秒前
11秒前
wangchenhong完成签到,获得积分10
12秒前
12秒前
fxy发布了新的文献求助10
13秒前
勤奋的葵阴完成签到,获得积分20
15秒前
15秒前
16秒前
达落发布了新的文献求助20
16秒前
Alice发布了新的文献求助50
17秒前
123456完成签到 ,获得积分10
17秒前
哈哈哈发布了新的文献求助10
18秒前
认真的成风完成签到,获得积分10
19秒前
19秒前
sje完成签到 ,获得积分10
19秒前
小烊完成签到,获得积分20
20秒前
wansida完成签到,获得积分10
20秒前
深情安青应助zhang采纳,获得10
20秒前
wjadejing发布了新的文献求助10
21秒前
美人骨发布了新的文献求助10
21秒前
22秒前
Profeto完成签到,获得积分10
23秒前
阿清完成签到,获得积分20
23秒前
无宇伦比应助KokuSeito采纳,获得20
23秒前
灯哥完成签到,获得积分10
24秒前
Maestro_S应助卷卷采纳,获得30
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4466869
求助须知:如何正确求助?哪些是违规求助? 3928410
关于积分的说明 12190126
捐赠科研通 3581657
什么是DOI,文献DOI怎么找? 1968208
邀请新用户注册赠送积分活动 1006621
科研通“疑难数据库(出版商)”最低求助积分说明 900772