Safe Deep Reinforcement Learning for Microgrid Energy Management in Distribution Networks With Leveraged Spatial–Temporal Perception

强化学习 计算机科学 微电网 可扩展性 背景(考古学) 分布式计算 人工智能 机器学习 控制(管理) 数据库 生物 古生物学
作者
Yujian Ye,Hongru Wang,Peiling Chen,Yi Tang,Goran Štrbac
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3759-3775 被引量:29
标识
DOI:10.1109/tsg.2023.3243170
摘要

Microgrids (MG) have recently attracted great interest as an effective solution to the challenging problem of distributed energy resources' management in distribution networks. In this context, despite deep reinforcement learning (DRL) constitutes a well-suited model-free and data-driven methodological framework, its application to MG energy management is still challenging, driven by their limitations on environment status perception and constraint satisfaction. In this paper, the MG energy management problem is formalized as a Constrained Markov Decision Process, and is solved with the state-of-the-art interior-point policy optimization (IPO) method. In contrast to conventional DRL approaches, IPO facilitates efficient learning in multi-dimensional, continuous state and action spaces, while promising satisfaction of complex network constraints of the distribution network. The generalization capability of IPO is further enhanced through the extraction of spatial-temporal correlation features from original MG operating status, combining the strength of edge conditioned convolutional network and long short-term memory network. Case studies based on an IEEE 15-bus and 123-bus test feeders with real-world data demonstrate the superior performance of the proposed method in improving MG cost effectiveness, safeguarding the secure operation of the network and uncertainty adaptability, through performance benchmarking against model-based and DRL-based baseline methods. Finally, case studies also analyze the computational and scalability performance of proposed and baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘀嘀哒哒完成签到,获得积分10
1秒前
1秒前
杨王发布了新的文献求助10
2秒前
白露完成签到 ,获得积分10
2秒前
2秒前
所所应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
成就凡双应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
成就凡双应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
hyw发布了新的文献求助10
6秒前
超级的觅松完成签到,获得积分20
7秒前
8秒前
nice瑞琪儿完成签到 ,获得积分10
8秒前
卡住叻应助wise111采纳,获得10
8秒前
在水一方应助aa采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
王一一发布了新的文献求助10
9秒前
李健的粉丝团团长应助026采纳,获得10
9秒前
掐钰完成签到,获得积分10
9秒前
Windln完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
moony完成签到,获得积分10
11秒前
小七发布了新的文献求助10
11秒前
qingfengnai完成签到,获得积分10
13秒前
有魅力的孤云完成签到 ,获得积分10
13秒前
简单渊思完成签到,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704982
求助须知:如何正确求助?哪些是违规求助? 5160109
关于积分的说明 15243509
捐赠科研通 4858841
什么是DOI,文献DOI怎么找? 2607448
邀请新用户注册赠送积分活动 1558519
关于科研通互助平台的介绍 1516177