阶段(地层学)
气溶胶
环境科学
机制(生物学)
估计
气象学
遥感
大气科学
地质学
工程类
地理
物理
古生物学
系统工程
量子力学
作者
Fuxing Li,Shi Xiao-li,Shiyao Wang,Zhen Wang,Gerrit de Leeuw,Zhengqiang Li,Zhengqiang Li,Wei Wang,Ying Zhang,Luo Zhang
出处
期刊:Chemosphere
[Elsevier BV]
日期:2024-07-01
卷期号:: 142820-142820
标识
DOI:10.1016/j.chemosphere.2024.142820
摘要
A two-stage model integrating a spatiotemporal linear mixed effect (STLME) and a geographic weight regression (GWR) model is proposed to improve the meteorological variables-based aerosol optical depth (AOD) retrieval method (Elterman retrieval model-ERM). The proposed model is referred to as the STG-ERM model. The STG-ERM model is applied over the Beijing-Tianjin-Hebei (BTH) region in China for the years 2019 and 2020. The results show that data coverage increased by 39.0% in 2019 and 40.5% in 2020. Cross-validation of the retrieval results versus multi-angle implementation of atmospheric correction (MAIAC) AOD shows the substantial improvement of the STG-ERM model over earlier meteorological models for AOD estimation, with a determination coefficient (R
科研通智能强力驱动
Strongly Powered by AbleSci AI