Epigenetic trajectory predicts development of clinical rheumatoid arthritis in anti-citrullinated protein antibody positive individuals: Targeting Immune Responses for Prevention of Rheumatoid Arthritis (TIP-RA)

类风湿性关节炎 免疫系统 医学 表观遗传学 免疫学 生物 基因 遗传学
作者
Edward B. Prideaux,David L. Boyle,Eunice Choi,Jane H. Buckner,William H. Robinson,V. Michael Holers,Kevin D. Deane,Gary S. Firestein,Wei Wang
标识
DOI:10.1101/2024.10.15.618490
摘要

Abstract The presence of anti-citrullinated protein antibodies (ACPAs) in the absence of clinically-apparent inflammatory arthritis (IA) identifies individuals “at-risk” for developing future clinical rheumatoid arthritis (RA). However, it is unclear why some ACPA+ individuals convert to clinical RA while others do not. We explored the possibility that epigenetic remodeling is part of the trajectory from an at-risk state to clinical disease. Cross-sectional differential methylation analysis at baseline revealed DMLs that distinguish the Pre-RA methylome from ACPA+ Non-converters. Genes overlapping these DMLs correspond to aberrant NOTCH signaling and DNA repair pathways in B cells. Longitudinal analysis showed that ACPA-Control and ACPA+ Non-converter methylomes are relatively constant. In contrast, the Pre-RA methylome remodeled along a dynamic “RA methylome trajectory” characterized by epigenetic changes in active regulatory elements. Machine learning revealed individual loci predictive of RA conversion. DNA methylation is a dynamic process in ACPA+ individuals at-risk for developing RA that later transition to clinical disease. In contrast, non-converters and controls have stable methylomes. The accumulation of epigenetic marks over time prior to conversion to clinical RA conforms to pathways that are associated with immunity and can be used to identify potential pathogenic pathways for therapeutic targeting and/or use as prognostic biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
任震宇完成签到,获得积分10
1秒前
科目三应助zhouzhou采纳,获得20
3秒前
3秒前
SciGPT应助大力世界采纳,获得10
4秒前
Jasper应助婧婧婧采纳,获得10
5秒前
柒柒完成签到,获得积分10
5秒前
苗条幻嫣发布了新的文献求助10
5秒前
胡佳文应助巫马尔槐采纳,获得10
5秒前
瓦尔迪发布了新的文献求助200
5秒前
鱼乐乐完成签到,获得积分10
5秒前
6秒前
husi发布了新的文献求助10
7秒前
12366666完成签到,获得积分10
7秒前
亦尘发布了新的文献求助10
7秒前
8秒前
8秒前
Jasper应助XYZ采纳,获得10
9秒前
负责绿兰完成签到,获得积分10
9秒前
12秒前
12秒前
12秒前
13秒前
14秒前
14秒前
16秒前
Ava应助殷勤的天亦采纳,获得10
17秒前
DX120210165完成签到,获得积分10
17秒前
lanxinyue应助Jia小哥采纳,获得10
17秒前
明亮三娘完成签到,获得积分20
17秒前
17秒前
18秒前
18秒前
蜜汁章鱼丸完成签到 ,获得积分10
19秒前
19秒前
SciGPT应助一个西藏采纳,获得10
20秒前
kelite发布了新的文献求助10
20秒前
无辜绿竹发布了新的文献求助10
20秒前
万能图书馆应助蛋蛋挞挞采纳,获得20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649707
求助须知:如何正确求助?哪些是违规求助? 4779165
关于积分的说明 15050119
捐赠科研通 4808741
什么是DOI,文献DOI怎么找? 2571782
邀请新用户注册赠送积分活动 1528105
关于科研通互助平台的介绍 1486871