Physics-Informed Machine Learning for Calibrating Macroscopic Traffic Flow Models

流量(计算机网络) 流量(数学) 物理 校准 计算机科学 统计物理学 运输工程 运筹学 模拟 工程类 机械 计算机安全 量子力学
作者
Yu Tang,Li Jin,Kaan Özbay
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/trsc.2024.0526
摘要

Well-calibrated traffic flow models are fundamental to understanding traffic phenomena and designing control strategies. Traditional calibration has been developed based on optimization methods. In this paper, we propose a novel physics-informed, learning-based calibration approach that achieves performances comparable to and even better than those of optimization-based methods. To this end, we combine the classical deep autoencoder, an unsupervised machine learning model consisting of one encoder and one decoder, with traffic flow models. Our approach informs the decoder of the physical traffic flow models and thus induces the encoder to yield reasonable traffic parameters given flow and speed measurements. We also introduce the denoising autoencoder into our method so that it can handle not only with normal data but also corrupted data with missing values. We verified our approach with a case study of Interstate 210 Eastbound in California. It turns out that our approach can achieve comparable performance to the-state-of-the-art calibration methods given normal data and outperform them given corrupted data with missing values. History: This paper has been accepted for the Transportation Science Special Issue on ISTTT25 Conference. Funding: This study was supported by the National Science Foundation [Grant CMMI-1949710] and the C2SMART Research Center, a Tier 1 University Transportation Center.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
zhu发布了新的文献求助10
刚刚
烬湾完成签到,获得积分10
1秒前
xsss完成签到 ,获得积分10
1秒前
温暖访枫完成签到,获得积分10
2秒前
Mace完成签到,获得积分10
2秒前
XIAOMEIMA完成签到 ,获得积分10
3秒前
小马发布了新的文献求助10
4秒前
芝芝完成签到,获得积分10
4秒前
李本来完成签到,获得积分10
4秒前
悄悄关注了科研通微信公众号
5秒前
wanci应助mengbicheng采纳,获得10
5秒前
xx发布了新的文献求助10
5秒前
和谐续发布了新的文献求助10
5秒前
Twinkle完成签到,获得积分10
6秒前
万能的翔王完成签到,获得积分10
6秒前
7秒前
baibai完成签到 ,获得积分10
7秒前
科研通AI2S应助jxr采纳,获得10
7秒前
8秒前
9秒前
我是老大应助zhu采纳,获得10
9秒前
10秒前
若水完成签到,获得积分10
10秒前
10秒前
lynn完成签到,获得积分10
10秒前
11秒前
Nelson完成签到,获得积分10
11秒前
11秒前
Dnil完成签到,获得积分10
11秒前
多年以后完成签到,获得积分10
11秒前
刚刚发布了新的文献求助10
12秒前
12秒前
风趣热狗完成签到,获得积分10
12秒前
12秒前
完美小蘑菇完成签到,获得积分10
13秒前
哗啦啦啦完成签到,获得积分10
14秒前
yangxt-iga发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4487262
求助须知:如何正确求助?哪些是违规求助? 3941982
关于积分的说明 12224692
捐赠科研通 3598496
什么是DOI,文献DOI怎么找? 1979118
邀请新用户注册赠送积分活动 1015941
科研通“疑难数据库(出版商)”最低求助积分说明 909157