微生物群
生物
人类微生物组计划
基因组
基因
生物标志物
计算生物学
生物信息学
生理学
遗传学
人体微生物群
作者
Sudeepti Kulshrestha,Priyanka Narad,Brojen Singh,Somnath S. Pai,Pooja Vijayaraghavan,Ansh Tandon,Payal Gupta,Deepak Modi,Abhishek Sengupta
摘要
ABSTRACT Problem The vaginal microbiome has a substantial role in the occurrence of preterm birth (PTB), which contributes substantially to neonatal mortality worldwide. However, current bioinformatics approaches mostly concentrate on the taxonomic classification and functional profiling of the microbiome, limiting their abilities to elucidate the complex factors that contribute to PTB. Method of study A total of 3757 vaginal microbiome 16S rRNA samples were obtained from five publicly available datasets. The samples were divided into two categories based on pregnancy outcome: preterm birth (PTB) ( N = 966) and term birth ( N = 2791). Additionally, the samples were further categorized based on the participants’ race and trimester. The 16S rRNA reads were subjected to taxonomic classification and functional profiling using the Parallel‐META 3 software in Ubuntu environment. The obtained abundances were analyzed using an integrated systems biology and machine learning approach to determine the key microbes, pathways, and genes that contribute to PTB. The resulting features were further subjected to statistical analysis to identify the top nine features with the greatest effect sizes. Results We identified nine significant features, namely Shuttleworthia , Megasphaera , Sneathia , proximal tubule bicarbonate reclamation pathway, systemic lupus erythematosus pathway, transcription machinery pathway, lepA gene, pepX gene, and rpoD gene. Their abundance variations were observed through the trimesters. Conclusions Vaginal infections caused by Shuttleworthia , Megasphaera , and Sneathia and altered small metabolite biosynthesis pathways such as lipopolysaccharide folate and retinal may increase the susceptibility to PTB. The identified organisms, genes, pathways, and their networks may be specifically targeted for the treatment of bacterial infections that increase PTB risk.
科研通智能强力驱动
Strongly Powered by AbleSci AI