亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence Applications in Oral Cancer and Oral Dysplasia

癌症 医学 发育不良 口腔癌 计算机科学 医学物理学 病理 内科学
作者
Chi T. Viet,Michael Zhang,Neeraja Dharmaraj,Grace Y. Li,Alexander T. Pearson,Victoria A. Manon,Anupama Grandhi,Ke Xu,Bradley E. Aouizerat,Simon Young
出处
期刊:Tissue Engineering Part A [Mary Ann Liebert]
卷期号:30 (19-20): 640-651 被引量:11
标识
DOI:10.1089/ten.tea.2024.0096
摘要

Oral squamous cell carcinoma (OSCC) is a highly unpredictable disease with devastating mortality rates that have not changed over the past decades, in the face of advancements in treatments and biomarkers, which have improved survival for other cancers. Delays in diagnosis are frequent, leading to more disfiguring treatments and poor outcomes for patients. The clinical challenge lies in identifying those patients at the highest risk of developing OSCC. Oral epithelial dysplasia (OED) is a precursor of OSCC with highly variable behavior across patients. There is no reliable clinical, pathological, histological, or molecular biomarker to determine individual risk in OED patients. Similarly, there are no robust biomarkers to predict treatment outcomes or mortality in OSCC patients. This review aims to highlight advancements in artificial intelligence (AI)-based methods to develop predictive biomarkers of OED transformation to OSCC or predictive biomarkers of OSCC mortality and treatment response. Biomarkers such as S100A7 demonstrate promising appraisal for the risk of malignant transformation of OED. Machine learning-enhanced multiplex immunohistochemistry workflows examine immune cell patterns and organization within the tumor immune microenvironment to generate outcome predictions in immunotherapy. Deep learning (DL) is an AI-based method using an extended neural network or related architecture with multiple "hidden" layers of simulated neurons to combine simple visual features into complex patterns. DL-based digital pathology is currently being developed to assess OED and OSCC outcomes. The integration of machine learning in epigenomics aims to examine the epigenetic modification of diseases and improve our ability to detect, classify, and predict outcomes associated with epigenetic marks. Collectively, these tools showcase promising advancements in discovery and technology, which may provide a potential solution to addressing the current limitations in predicting OED transformation and OSCC behavior, both of which are clinical challenges that must be addressed in order to improve OSCC survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
ceeray23发布了新的文献求助50
14秒前
量子星尘发布了新的文献求助10
15秒前
科研通AI2S应助zeran采纳,获得10
15秒前
忐忑的黄豆完成签到,获得积分10
21秒前
星辰大海应助满意的世界采纳,获得10
34秒前
38秒前
朴实涵菡发布了新的文献求助10
45秒前
49秒前
55秒前
JamesPei应助贤惠的曼寒采纳,获得10
58秒前
1分钟前
NEKO发布了新的文献求助10
1分钟前
小蘑菇应助橘子有点酸采纳,获得10
1分钟前
1分钟前
善学以致用应助光轮2000采纳,获得10
1分钟前
nini发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
dawnfrf发布了新的文献求助45
1分钟前
1分钟前
光轮2000发布了新的文献求助10
1分钟前
寻舟者发布了新的文献求助10
1分钟前
1分钟前
z_rainbow发布了新的文献求助10
1分钟前
寻舟者完成签到,获得积分10
2分钟前
dawnfrf完成签到,获得积分10
2分钟前
ciallo发布了新的文献求助10
2分钟前
传统的怀薇完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
nini完成签到,获得积分10
2分钟前
皮皮完成签到 ,获得积分10
2分钟前
情怀应助光轮2000采纳,获得10
3分钟前
ljx完成签到 ,获得积分10
3分钟前
weihua完成签到 ,获得积分10
3分钟前
3分钟前
大个应助ciallo采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603285
求助须知:如何正确求助?哪些是违规求助? 4688360
关于积分的说明 14853336
捐赠科研通 4688979
什么是DOI,文献DOI怎么找? 2540586
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471594