A Monitoring Device and Grade Prediction System for Grain Mildew

霉病 白粉病 计算机科学 人工智能 卷积神经网络 机器学习 过程(计算) 数据挖掘 农学 生物 植物 操作系统
作者
Lei Xu,Yane Li,Xiang Weng,Jiankai Shi,Hailin Feng,Xingquan Liu,Guoxin Zhou
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (20): 6556-6556 被引量:1
标识
DOI:10.3390/s24206556
摘要

Mildew infestation is a significant cause of loss during grain storage. The growth and metabolism of mildew leads to changes in gas composition and temperature within granaries. Recent advances in sensor technology and machine learning enable the prediction of grain mildew during storage. Current research primarily focuses on predicting mildew occurrence or grading using simple machine learning methods, without in-depth exploration of the time series characteristics of mildew process data. A monitoring device was designed and developed to capture high-quality microenvironment parameters and image data during a simulated mildew process experiment. Using the “Yongyou 15” rice varieties from Zhejiang Province, five simulation experiments were conducted under varying temperature and humidity conditions between January and May 2023. Mildew grades were defined through manual analysis to construct a multimodal dataset for the rice mildew process. This study proposes a combined model (CNN–LSTM–A) that integrates convolutional neural networks (CNN), long short-term memory (LSTM) networks, and attention mechanisms to predict the mildew grade of stored rice. The proposed model was compared with LSTM, CNN–LSTM, and LSTM–Attention models. The results indicate that the proposed model outperforms the others, achieving a prediction accuracy of 98%. The model demonstrates superior accuracy and more stable performance. The generalization performance of the prediction model was evaluated using four experimental datasets with varying storage temperature and humidity conditions. The results show that the model achieves optimal prediction stability when the training set contains similar storage temperatures, with prediction accuracy exceeding 99.8%. This indicates that the model can effectively predict the mildew grades in rice under varying environmental conditions, demonstrating significant potential for grain mildew prediction and early warning systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助WangXuerong采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
LCHUANCHUAN发布了新的文献求助30
1秒前
彭豪东关注了科研通微信公众号
1秒前
徐志豪发布了新的文献求助10
2秒前
Bugatti完成签到,获得积分10
2秒前
yanzinie发布了新的文献求助10
2秒前
sunrain完成签到,获得积分10
2秒前
2秒前
陈陈陈完成签到,获得积分10
3秒前
笑笑发布了新的文献求助10
3秒前
传奇3应助宇文青寒采纳,获得10
3秒前
ZYH发布了新的文献求助10
3秒前
3秒前
刘刘完成签到,获得积分10
4秒前
4秒前
热心青易完成签到,获得积分10
4秒前
yuon完成签到,获得积分10
4秒前
飞龙爵士完成签到,获得积分10
4秒前
5秒前
ssssss发布了新的文献求助10
5秒前
6秒前
7秒前
迦佭完成签到,获得积分10
7秒前
ShuxianYang完成签到,获得积分10
7秒前
小丹小丹完成签到 ,获得积分10
7秒前
桐桐应助yanzinie采纳,获得10
8秒前
8秒前
8秒前
小鹿5460完成签到,获得积分10
8秒前
9秒前
充电宝应助细菌明虐采纳,获得10
9秒前
星辰大海应助负责无敌采纳,获得10
9秒前
刺1656完成签到,获得积分10
10秒前
郭郭发布了新的文献求助10
10秒前
霂辰发布了新的文献求助10
11秒前
CodeCraft应助Reese采纳,获得10
11秒前
etqs24发布了新的文献求助20
11秒前
西米爱吃薯条完成签到,获得积分20
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4953208
求助须知:如何正确求助?哪些是违规求助? 4215790
关于积分的说明 13115592
捐赠科研通 3997839
什么是DOI,文献DOI怎么找? 2188074
邀请新用户注册赠送积分活动 1203197
关于科研通互助平台的介绍 1115963