Identification of high-risk intracranial plaques with 3D high-resolution magnetic resonance imaging-based radiomics and machine learning

无线电技术 医学 磁共振成像 神经组阅片室 无症状的 接收机工作特性 放射科 高分辨率 神经学 内科学 遥感 精神科 地质学
作者
Hongxia Li,Jia Liu,Zheng Dong,Xingzhi Chen,Changsheng Zhou,Chencui Huang,Yingle Li,Quanhui Liu,Xiaoqin Su,Xiaoqing Cheng,Guangming Lu
出处
期刊:Journal of Neurology [Springer Science+Business Media]
卷期号:269 (12): 6494-6503 被引量:19
标识
DOI:10.1007/s00415-022-11315-4
摘要

Identifying high-risk intracranial plaques is significant for the treatment and prevention of stroke.To develop a high-risk plaque model using three-dimensional (3D) high-resolution magnetic resonance imaging (HRMRI) based radiomics features and machine learning.136 patients with documented symptomatic intracranial artery stenosis and available HRMRI data were included. Among these patients, 136 and 92 plaques were identified as symptomatic and asymptomatic plaques, respectively. A conventional model was developed by recording and quantifying the radiological plaque characteristics. Radiomics features from T1-weighted images (T1WI) and contrast-enhanced T1WI (CE-T1WI) were used to construct a high-risk plaque model with linear support vector classification (linear SVC). The radiological and radiomics features were combined to build a combined model. Receiver operating characteristic (ROC) curves were used to evaluate these models.Plaque length, burden, and enhancement were independently associated with clinical symptoms and were included in the conventional model, which had an AUC of 0.853 vs. 0.837 in the training and test sets. While the radiomics and the combined model showed an improved AUC: 0.923 vs. 0.925 for the training sets and 0.906 vs. 0.903 in the test sets. Both the radiomics model (p = 0.024, p = 0.018) and combined model (p = 0.042, p = 0.049) outperformed the conventional model in the two sets, whereas the performance of the combined model was not significantly different from that of the radiomics model in the two sets (p = 0.583 and p = 0.606).The radiomics model based on 3D HRMRI can accurately differentiate symptomatic from asymptomatic intracranial arterial plaques and significantly outperforms the conventional model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助M.采纳,获得10
1秒前
1秒前
1秒前
pphhhhaannn发布了新的文献求助10
2秒前
祝星完成签到,获得积分10
2秒前
科研通AI6应助Yolo采纳,获得10
2秒前
2秒前
天天快乐应助福娃采纳,获得10
3秒前
3秒前
3秒前
猪猪hero应助zyy采纳,获得10
3秒前
过时的映安完成签到,获得积分10
3秒前
大模型应助煎饼果子采纳,获得10
4秒前
陈柚瑾发布了新的文献求助10
4秒前
顾九思完成签到 ,获得积分10
5秒前
臭臭完成签到 ,获得积分10
5秒前
fen发布了新的文献求助10
5秒前
yyds发布了新的文献求助10
5秒前
科研通AI6应助阿呆采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得30
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
6秒前
俭朴的白羊完成签到,获得积分10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
睡懒觉发布了新的文献求助10
6秒前
zq777完成签到,获得积分10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
zzyy完成签到,获得积分10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
卷毛兔发布了新的文献求助10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
FISH发布了新的文献求助10
7秒前
幸运鹅应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260333
求助须知:如何正确求助?哪些是违规求助? 4421812
关于积分的说明 13764321
捐赠科研通 4295995
什么是DOI,文献DOI怎么找? 2357141
邀请新用户注册赠送积分活动 1353475
关于科研通互助平台的介绍 1314745