MSMTSeg: Multi-Stained Multi-Tissue Segmentation of Kidney Histology Images via Generative Self-Supervised Meta-Learning Framework

计算机科学 分割 人工智能 模式识别(心理学) 特征提取 污渍 机器学习 病理 医学 染色
作者
Xueyu Liu,Rui Wang,Yexin Lai,Yongfei Wu,Hangbei Cheng,Yuanyue Lu,Jianan Zhang,Ning Hao,Chenglong Ban,Yanru Wang,Shuqin Tang,Yuxuan Yang,Ming Li,Xiaoshuang Zhou,Wen Zheng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/jbhi.2024.3381047
摘要

Accurately diagnosing chronic kidney disease requires pathologists to assess the structure of multiple tissues under different stains, a process that is timeconsuming and labor-intensive. Current AI-based methods for automatic structure assessment, like segmentation, often demand extensive manual annotation and focus on single stain domain. To address these challenges, we introduce MSMTSeg, a generative self-supervised meta-learning framework for multi-stained multi-tissue segmentation in renal biopsy whole slide images (WSIs). MSMTSeg incorporates multiple stain transform models for style translation of inter-stain domains, a self-supervision module for obtaining pre-trained models with the domain-specific feature representation, and a meta-learning strategy that leverages generated virtual data and pre-trained models to learn the domain-invariant feature representation across multiple stains, thereby enhancing segmentation performance. Experimental results demonstrate that MSMTSeg achieves superior and robust performance, with mDSC of 0.836 and mIoU of 0.718 for multiple tissues under different stains, using only one annotated training sample for each stain. Our ablation study confirms the effectiveness of each component, positioning MSMTSeg ahead of classic advanced segmentation networks, recent few-shot segmentation methods, and unsupervised domain adaptation methods. In conclusion, our proposed few-shot cross-domain technology offers a feasible and cost-effective solution for multi-stained renal histology segmentation, providing convenient assistance to pathologists in clinical practice. The source code and conditionally accessible data are available at https://github.com/SnowRain510/MSMTSeg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2Y_DADA完成签到,获得积分10
刚刚
淬h完成签到,获得积分10
1秒前
WSH发布了新的文献求助10
1秒前
2秒前
Gray完成签到,获得积分20
2秒前
优雅的母鸡完成签到,获得积分10
2秒前
yang完成签到,获得积分10
2秒前
Cc完成签到,获得积分10
3秒前
4秒前
烟花应助帅气老虎采纳,获得10
5秒前
7秒前
香辣脆皮坤完成签到,获得积分10
7秒前
7秒前
蛋花花花发布了新的文献求助10
9秒前
彭于晏应助WSH采纳,获得10
10秒前
情怀应助WSH采纳,获得10
10秒前
瘦瘦的枫叶完成签到 ,获得积分10
11秒前
11秒前
一口蒜苗完成签到,获得积分10
12秒前
小木林完成签到 ,获得积分10
12秒前
搜集达人应助封雪婷采纳,获得30
12秒前
Bob2完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
冷冷暴力完成签到,获得积分10
13秒前
zhimajiang完成签到 ,获得积分10
13秒前
jj完成签到,获得积分10
15秒前
帅气老虎完成签到,获得积分10
15秒前
15秒前
淡淡菠萝完成签到 ,获得积分10
16秒前
16秒前
Lojong完成签到,获得积分10
17秒前
wyqking发布了新的文献求助10
17秒前
帅气老虎发布了新的文献求助10
19秒前
19秒前
黄黄黄完成签到,获得积分10
20秒前
火星上的莫英完成签到 ,获得积分10
21秒前
从容谷菱完成签到,获得积分10
22秒前
22秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346809
关于积分的说明 10330527
捐赠科研通 3063158
什么是DOI,文献DOI怎么找? 1681402
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728