荷电状态
卡尔曼滤波器
算法
扩展卡尔曼滤波器
接头(建筑物)
锂(药物)
模糊逻辑
电荷(物理)
国家(计算机科学)
计算机科学
能量(信号处理)
功能(生物学)
控制理论(社会学)
估计
电池(电)
数学
工程类
物理
人工智能
功率(物理)
统计
建筑工程
医学
控制(管理)
系统工程
量子力学
进化生物学
生物
内分泌学
作者
Donglei Liu,Shunli Wang,Yongcun Fan,Carlos Fernández,Frede Blaabjerg
标识
DOI:10.1016/j.est.2024.111222
摘要
In view of the unmeasurable state parameters of electric-vehicle lithium-ion batteries, this paper investigates a novel multi-factor fuzzy membership function - adaptive extended Kalman filter (MFMF-AEKF) algorithm for the online joint estimation of the state of charge and energy. Strong nonlinear characteristics of model parameters are characterized by considering multiple processing factors of electrochemical and diffusion effects for lithium-ion batteries and constructing an optimized multifactor coupling model. In the proposed MFMF-AEKF method, multi-space-scale factors are introduced to realize the numerical analysis of the multi-factor coupled model parameters and state estimation under dynamic working conditions of electric-vehicle lithium-ion batteries. The proposed MFMF-AEKF algorithm estimates the state of charge (SOC) with the overall best mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), and maximum error (ME) values of 1.822 %, 4.322 %, 1.947 %, and 2.954 %, respectively, under challenging working conditions. And The MAE, MAPE, RMSE, and ME values for the state of energy (SOE) are 0.617 %, 1.711 %, 0.695 %, and 1.011 %, respectively. Both state estimation results are better than the traditional method. The proposed MFMF-AEKF algorithm has higher estimation accuracy which provides a feasible estimation algorithm for the joint SOC and SOE of lithium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI