Graph-based multi-agent reinforcement learning for large-scale UAVs swarm system control

强化学习 群体行为 计算机科学 图形 比例(比率) 分布式计算 控制(管理) 多智能体系统 人工智能 理论计算机科学 物理 量子力学
作者
Bocheng Zhao,Mingying Huo,Zheng Li,Ze Yu,Naiming Qi
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:150: 109166-109166 被引量:10
标识
DOI:10.1016/j.ast.2024.109166
摘要

In this study, a novel graph-embedding technique based on a graph neural network (GNN) is proposed to identify the topology in the motion of a unmanned aerial vehicles (UAV) swarm and quickly obtain local information around each agent. We also propose a model reference reinforcement learning method to learn the potential field function and determine an appropriate strategy for each agent that can satisfy the requirements of collaborative motion and obstacle avoidance for large-scale UAV swarms. First, a new swarm structure is proposed to provide reserved maneuvering space for UAVs during flight. In addition, a method was proposed to encode the obstacle avoidance behavior of multiple UAVs in a continuous space into spatial maps. A graph attention mechanism (GAT) structure based on local information was proposed to obtain dynamic graph information, and each individual output action was obtained according to the current state information. To improve the training effect, this method can restrain the UAV group while maintaining the formation and preventing collisions among the UAV. Second, a new distributed control algorithm based on multi-agent reinforcement learning (MARL) is proposed by learning the potential field function using local information obtained by a GNN. Each individual can repel and cooperate with the target within a short range and attract objects over a long distance. Finally, simulation results demonstrate the effectiveness and superiority of the proposed method, which has great potential for application in online autonomous collaboration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
润润润完成签到 ,获得积分10
1秒前
2秒前
2秒前
白菜发布了新的文献求助10
4秒前
5秒前
lizhiqian2024发布了新的文献求助10
5秒前
6秒前
ry发布了新的文献求助10
8秒前
8秒前
11秒前
11秒前
科研通AI5应助TszPok采纳,获得10
12秒前
14秒前
15秒前
QL发布了新的文献求助10
16秒前
17秒前
打打应助不安的煜城采纳,获得10
18秒前
huangyifan发布了新的文献求助10
18秒前
自然的如南完成签到,获得积分10
18秒前
华仔应助猫毛采纳,获得10
18秒前
18秒前
19秒前
21秒前
22秒前
Niko发布了新的文献求助10
22秒前
小马甲应助瀚森采纳,获得10
23秒前
24秒前
26秒前
42完成签到,获得积分10
26秒前
小铃铛发布了新的文献求助10
26秒前
科研通AI5应助神经蛙采纳,获得10
27秒前
随安完成签到,获得积分20
27秒前
28秒前
CodeCraft应助明理的南风采纳,获得10
29秒前
sciDoge应助hope采纳,获得10
30秒前
30秒前
30秒前
言言言言完成签到,获得积分20
31秒前
31秒前
zero完成签到,获得积分10
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351563
关于积分的说明 10354783
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684500
邀请新用户注册赠送积分活动 809737
科研通“疑难数据库(出版商)”最低求助积分说明 765635