BiFA: Remote Sensing Image Change Detection With Bitemporal Feature Alignment

变更检测 遥感 特征(语言学) 计算机科学 人工智能 特征提取 计算机视觉 模式识别(心理学) 地质学 语言学 哲学
作者
Haotian Zhang,Hao Chen,Chenyao Zhou,Keyan Chen,Chenyang Liu,Zhengxia Zou,Zhenwei Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:20
标识
DOI:10.1109/tgrs.2024.3376673
摘要

Despite the success of deep learning-based change detection methods, their existing insufficiency in temporal (channel, spatial) and multi-scale alignment have rendered them insufficient capability in mitigating external factors (illumination changes and perspective differences, etc.) arising from different imaging conditions during change detection. In this paper, a Bi-temporal Feature Alignment (BiFA) model is proposed to produce a precise change detection map in a lightweight manner by reducing the impact of irrelevant factors. Specifically, for the temporal alignment, the Bi-temporal Interaction (BI) module is proposed to realize the alignment of the bi-temporal image channel level. Our intuition is introducing the bi-temporal interaction in the feature extraction stage may benefit suppressing the interference, such as illumination changes. Simultaneously, the Alignment module based on Differential Flow Field (ADFF) is proposed to explicitly estimate the offset of the bi-temporal image and realize their spatial level alignment to mitigate the inadequate registration resulting from different perspectives. Furthermore, for the multi-scale alignment, we introduce the Implicit Neural alignment Decoder (IND) to produce more refined prediction maps achieving precise alignment of multi-scale features by learning continuous image representations in coordinate space. Our BiFA outperforms other state-of-the-art methods on six datasets (such as the F1/IoU scores are improved by 2.70%/3.91%, 2.01%/2.94% on LEVIR+-CD and SYSU-CD, respectively) and displays greater robustness in cross-resolutions change detection. Our code is available at https://github.com/zmoka-zht/BiFA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
4秒前
隐形曼青应助天天采纳,获得10
4秒前
整齐南莲发布了新的文献求助10
5秒前
5秒前
我要逆天发布了新的文献求助10
5秒前
zzf发布了新的文献求助10
6秒前
xuan2022发布了新的文献求助10
7秒前
neonsun完成签到,获得积分0
8秒前
李君然发布了新的文献求助10
10秒前
康阿蛋发布了新的文献求助10
10秒前
赘婿应助yjy采纳,获得10
12秒前
小药丸完成签到,获得积分10
12秒前
Amir完成签到,获得积分10
13秒前
整齐南莲完成签到,获得积分10
13秒前
852应助康阿蛋采纳,获得10
14秒前
zzf关闭了zzf文献求助
15秒前
深情安青应助916采纳,获得10
15秒前
李李完成签到,获得积分10
19秒前
19秒前
科研通AI5应助Wu采纳,获得10
20秒前
22秒前
22秒前
科研通AI5应助盛夏如花采纳,获得10
23秒前
yiyi发布了新的文献求助10
24秒前
YanK完成签到,获得积分10
24秒前
希格玻色子完成签到,获得积分10
24秒前
红绿灯的黄完成签到,获得积分10
24秒前
dilli完成签到 ,获得积分10
24秒前
25秒前
平常的毛豆应助神华采纳,获得10
26秒前
fssq发布了新的文献求助30
26秒前
沐雨橙风发布了新的文献求助10
26秒前
李爱国应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
Ava应助科研通管家采纳,获得10
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800680
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328247
捐赠科研通 3062514
什么是DOI,文献DOI怎么找? 1681009
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627