SRSF2 is a key player in orchestrating the directional migration and differentiation of MyoD progenitors during skeletal muscle development

MyoD公司 钥匙(锁) 骨骼肌 祖细胞 细胞生物学 祖细胞 肌发生 生物 心肌细胞 解剖 干细胞 生态学
作者
Rula Sha,Ruochen Guo,Huimin Duan,Qian Peng,Ningyang Yuan,Zhenzhen Wang,Peilin Li,Zhihui Xie,Xu You,Ying Feng
标识
DOI:10.1101/2024.04.06.588421
摘要

SRSF2 plays a dual role, functioning both as a transcriptional regulator and a key player in alternative splicing. The absence of SRSF2 in MyoD+ progenitors resulted in perinatal mortality in mice, accompanied by severe skeletal muscle defects. SRSF2 deficiency disrupts the directional migration of MyoD progenitors, causing them to disperse into both muscle and non-muscle regions. Single-cell RNA-sequencing analysis revealed significant alterations in SRSF2-deficient myoblasts, including a reduction in extracellular matrix components, diminished expression of genes involved in ameboid-type cell migration and cytoskeleton organization, mitosis irregularities, and premature differentiation. Notably, one of the targets regulated by SRSF2 is the serine/threonine kinase Aurka. Knockdown of Aurka led to reduced cell proliferation, disrupted cytoskeleton, and impaired differentiation, reflecting the effects seen with SRSF2 knockdown. Crucially, the introduction of exogenous Aurka in SRSF2-knockdown cells markedly alleviated the differentiation defects caused by SRSF2 knockdown. Furthermore, our research unveiled the role of SRSF2 in controlling alternative splicing within genes associated with human skeletal muscle diseases, such as BIN1, DMPK, FHL1, and LDB3. Specifically, the precise knockdown of the Bin1 exon17-containing variant, which is excluded following SRSF2 depletion, profoundly disrupted C2C12 cell differentiation. In summary, our study offers valuable insights into the role of SRSF2 in governing MyoD progenitors to specific muscle regions, thereby controlling their differentiation through the regulation of targeted genes and alternative splicing during skeletal muscle development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ELLA发布了新的文献求助30
2秒前
万事芬达发布了新的文献求助20
2秒前
2秒前
研友_ngqxV8完成签到,获得积分10
2秒前
3秒前
小二郎应助彭医生采纳,获得10
3秒前
真理发布了新的文献求助10
4秒前
小蘑菇应助难过早晨采纳,获得10
5秒前
勇敢无畏先锋完成签到 ,获得积分10
6秒前
shinysparrow应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
shinysparrow应助科研通管家采纳,获得10
8秒前
晨曦发布了新的文献求助10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
不可思宇完成签到,获得积分10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
shinysparrow应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
shinysparrow应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
SciGPT应助huayu采纳,获得10
10秒前
丘比特应助岁月已逝0848采纳,获得10
14秒前
14秒前
黄春天完成签到 ,获得积分10
15秒前
水晶茶杯发布了新的文献求助20
15秒前
JamesPei应助xixi采纳,获得10
15秒前
酷波er应助潇潇采纳,获得10
19秒前
Freya发布了新的文献求助20
20秒前
三月雪卿完成签到 ,获得积分10
20秒前
开放灭绝完成签到,获得积分20
21秒前
独行侠完成签到,获得积分10
22秒前
ELLA完成签到,获得积分20
23秒前
夏叶刚发布了新的文献求助20
23秒前
24秒前
开放灭绝发布了新的文献求助30
27秒前
背后归尘完成签到,获得积分10
27秒前
沙代萱完成签到,获得积分10
28秒前
29秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2385369
求助须知:如何正确求助?哪些是违规求助? 2092008
关于积分的说明 5262209
捐赠科研通 1819075
什么是DOI,文献DOI怎么找? 907213
版权声明 559114
科研通“疑难数据库(出版商)”最低求助积分说明 484620