已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi‐feature, Chinese–Western medicine‐integrated prediction model for diabetic peripheral neuropathy based on machine learning and SHAP

医学 预测建模 中医药 机器学习 内科学 人工智能 周围神经病变 糖尿病 计算机科学 替代医学 病理 内分泌学
作者
Aijuan Jiang,Jiajie Li,Lujie Wang,Wenshu Zha,Yixuan Lin,Jindong Zhao,Zhaohui Fang,Guo-Ming Shen
出处
期刊:Diabetes-metabolism Research and Reviews [Wiley]
卷期号:40 (4) 被引量:9
标识
DOI:10.1002/dmrr.3801
摘要

Abstract Background Clinical studies have shown that diabetic peripheral neuropathy (DPN) has been on the rise, with most patients presenting with severe and progressive symptoms. Currently, most of the available prediction models for DPN are derived from general clinical information and laboratory indicators. Several Traditional Chinese medicine (TCM) indicators have been utilised to construct prediction models. In this study, we established a novel machine learning‐based multi‐featured Chinese–Western medicine‐integrated prediction model for DPN using clinical features of TCM. Materials and Methods The clinical data of 1581 patients with Type 2 diabetes mellitus (T2DM) treated at the Department of Endocrinology of the First Affiliated Hospital of Anhui University of Chinese Medicine were collected. The data (including general information, laboratory parameters and TCM features) of 1142 patients with T2DM were selected after data cleaning. After baseline description analysis of the variables, the data were divided into training and validation sets. Four prediction models were established and their performance was evaluated using validation sets. Meanwhile, the accuracy, precision, recall, F1 score and area under the curve (AUC) of ROC were calculated using ten‐fold cross‐validation to further assess the performance of the models. An explanatory analysis of the results of the DPN prediction model was carried out using the SHAP framework based on machine learning‐based prediction models. Results Of the 1142 patients with T2DM, 681 had a comorbidity of DPN, while 461 did not. There was a significant difference between the two groups in terms of age, cause of disease, systolic pressure, HbA1c, ALT, RBC, Cr, BUN, red blood cells in the urine, glucose in the urine, and protein in the urine ( p < 0.05). T2DM patients with a comorbidity of DPN exhibited diverse TCM symptoms, including limb numbness, limb pain, hypodynamia, thirst with desire for drinks, dry mouth and throat, blurred vision, gloomy complexion, and unsmooth pulse, with statistically significant differences ( p < 0.05). Our results showed that the proposed multi‐featured Chinese–Western medicine‐integrated prediction model was superior to conventional models without characteristic TCM indicators. The model showed the best performance (accuracy = 0.8109, precision = 0.8029, recall = 0.9060, F1 score = 0.8511, and AUC = 0.9002). SHAP analysis revealed that the dominant risk factors that caused DPN were TCM symptoms (limb numbness, thirst with desire for drinks, blurred vision), age, cause of disease, and glycosylated haemoglobin. These risk factors were exerted positive effects on the DPN prediction models. Conclusions A multi‐feature, Chinese–Western medicine‐integrated prediction model for DPN was established and validated. The model improves early‐stage identification of high‐risk groups for DPN in the diagnosis and treatment of T2DM, while also providing informative support for the intelligent management of chronic conditions such as diabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吾系渣渣辉完成签到 ,获得积分10
5秒前
shaylie完成签到 ,获得积分10
8秒前
zj完成签到,获得积分10
15秒前
完美世界应助paofu泡芙采纳,获得10
21秒前
OKC发布了新的文献求助10
22秒前
gxmu6322完成签到,获得积分10
26秒前
科研通AI6应助浔初先生采纳,获得10
35秒前
M_vil完成签到,获得积分10
41秒前
OKC完成签到,获得积分10
41秒前
西瓜妹完成签到,获得积分10
43秒前
在水一方应助青椒黑蒜采纳,获得10
53秒前
酷波er应助索隆大人采纳,获得10
54秒前
zzxx完成签到 ,获得积分10
56秒前
kkk完成签到 ,获得积分10
58秒前
小休完成签到 ,获得积分10
58秒前
1分钟前
科研狗旭旭完成签到,获得积分10
1分钟前
1分钟前
vierice完成签到,获得积分10
1分钟前
llk完成签到 ,获得积分10
1分钟前
Jasper应助青椒黑蒜采纳,获得10
1分钟前
沉静安荷发布了新的文献求助20
1分钟前
马前人完成签到,获得积分10
1分钟前
浮游应助XStars10采纳,获得10
1分钟前
Yi羿完成签到 ,获得积分10
1分钟前
俭朴山灵完成签到 ,获得积分10
1分钟前
邓倩完成签到,获得积分10
1分钟前
pcr163应助科研通管家采纳,获得80
1分钟前
852应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得30
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
1分钟前
英俊的铭应助科研通管家采纳,获得30
1分钟前
mukji发布了新的文献求助10
1分钟前
阔达的小土豆完成签到 ,获得积分10
1分钟前
3080完成签到 ,获得积分10
1分钟前
斯文败类应助微笑虔采纳,获得10
1分钟前
mukji完成签到,获得积分10
1分钟前
XStars10完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Effects of different anesthesia methods on bleeding and prognosis in endoscopic sinus surgery: a meta-analysis and systematic review of randomized controlled trials 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4844028
求助须知:如何正确求助?哪些是违规求助? 4144701
关于积分的说明 12833377
捐赠科研通 3891205
什么是DOI,文献DOI怎么找? 2138981
邀请新用户注册赠送积分活动 1159093
关于科研通互助平台的介绍 1059170