Microwave‐ and Ultrasound‐Assisted Synthesis of Metal‐Organic Frameworks ( MOF ) and Covalent Organic Frameworks ( COF )

共价键 化学 化学工程 有机化学 工程类
作者
Sanjit Gaikwad,Sangil Han
标识
DOI:10.1002/9783527844494.ch10
摘要

Chapter 10 Microwave- and Ultrasound-Assisted Synthesis of Metal-Organic Frameworks ( MOF ) and Covalent Organic Frameworks ( COF ) Sanjit Gaikwad, Sanjit Gaikwad Changwon National University, Department of Chemical Engineering, Changwon-Si, Gyeongsangnam-do, 51140 South KoreaSearch for more papers by this authorSangil Han, Sangil Han Changwon National University, Department of Chemical Engineering, Changwon-Si, Gyeongsangnam-do, 51140 South KoreaSearch for more papers by this author Sanjit Gaikwad, Sanjit Gaikwad Changwon National University, Department of Chemical Engineering, Changwon-Si, Gyeongsangnam-do, 51140 South KoreaSearch for more papers by this authorSangil Han, Sangil Han Changwon National University, Department of Chemical Engineering, Changwon-Si, Gyeongsangnam-do, 51140 South KoreaSearch for more papers by this author Book Editor(s):Dakeshwar Kumar Verma, Dakeshwar Kumar Verma Govt. Digvijay Autonomous Postgraduate College, Department of Chemistry, Rajnandgaon, 491441 Chhattisgarh, IndiaSearch for more papers by this authorChandrabhan Verma, Chandrabhan Verma Khalifa University of Science and Technology, Department of Chemical Engineering, P.O. Box, Abu Dhabi, 127788 United Arab EmiratesSearch for more papers by this authorPaz Otero Fuertes, Paz Otero Fuertes University of Vigo Faculty of Food Science and Technology, Analytical and Food Chemistry Department, Ourense, 32004 SpainSearch for more papers by this author First published: 28 March 2024 https://doi.org/10.1002/9783527844494.ch10 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Microwave- and ultrasound-assisted synthesis techniques have emerged as a promising approach for the rapid and efficient preparation of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs). This approach has shown numerous advantages over conventional synthesis methods, including shorter reaction times, higher yields, and greater purity of products. In this chapter, we will provide a complete outline of the recent developments in microwave- and ultrasound-assisted techniques of MOF and COF synthesis. We discuss the fundamental principles and the synthesis mechanisms of microwave- and ultrasound-assisted synthesis, and the key factors that influence the formation of these materials. Moreover, we highlight the applications of MOFs and COFs in various fields, such as energy storage and conversion, catalysis, CO 2 capture, and sensing. Finally, we provide an outlook on the future prospects of microwave- and ultrasound-assisted synthesis of MOFs and COFs as well as the challenges and opportunities. References Lahcen , A.A. , Surya , S.G. , Beduk , T. et al. ( 2022 ). Metal–organic frameworks meet molecularly imprinted polymers: insights and prospects for sensor applications . ACS Appl. Mater. Interfaces 14 ( 44 ): 49399 – 49424 . 10.1021/acsami.2c12842 CASPubMedGoogle Scholar Mason , J.A. , Veenstra , M. , and Long , J.R. ( 2014 ). Evaluating metal–organic frameworks for natural gas storage . Chem. Sci. 5 ( 1 ): 32 – 51 . 10.1039/C3SC52633J CASPubMedWeb of Science®Google Scholar Wang , S. , Yang , Y. , Liang , X. et al. ( 2023 ). Ultrathin ionic COF membrane via polyelectrolyte-mediated assembly for efficient co 2 separation . Adv. Funct. Mater. 2300386 . 10.1002/adfm.202300386 Google Scholar Qian , Q. , Asinger , P.A. , Lee , M.J. et al. ( 2020 ). MOF-based membranes for gas separations . Chem. Rev. 120 ( 16 ): 8161 – 8266 . 10.1021/acs.chemrev.0c00119 CASPubMedWeb of Science®Google Scholar Du , Y.-X. , Zhou , Y.-T. , and Zhu , M.-Z. ( 2023 ). Co-based MOF derived metal catalysts: from nano-level to atom-level . Tungsten 1 – 16 . Google Scholar Sun , M. , Liu , Z. , Wu , L. et al. ( 2023 ). Bioorthogonal-activated in situ vaccine mediated by a COF-based catalytic platform for potent cancer immunotherapy . J. Am. Chem. Soc. 145 : 5330 – 5341 . 10.1021/jacs.2c13010 CASPubMedGoogle Scholar Liu , X. , Huang , D. , Lai , C. et al. ( 2019 ). Recent advances in covalent organic frameworks (COFs) as a smart sensing material . Chem. Soc. Rev. 48 ( 20 ): 5266 – 5302 . 10.1039/C9CS00299E CASPubMedWeb of Science®Google Scholar Liu , Y. , Chen , L. , Yang , L. et al. ( 2023 ). Porous framework materials for energy & environment relevant applications: a systematic review . Green Energy Environ. 9 : 217 – 310 . 10.1016/j.gee.2022.12.010 Google Scholar Wu , Y. and Weckhuysen , B.M. ( 2021 ). Separation and purification of hydrocarbons with porous materials . Angew. Chem. Int. Ed. 60 ( 35 ): 18930 – 18949 . 10.1002/anie.202104318 CASPubMedWeb of Science®Google Scholar Zhang , S. , Wang , J. , Zhang , Y. et al. ( 2021 ). Applications of water-stable metal-organic frameworks in the removal of water pollutants: a review . Environ. Pollut. 291 : 118076 . 10.1016/j.envpol.2021.118076 CASPubMedWeb of Science®Google Scholar Wei , H. , Chai , S. , Hu , N. et al. ( 2015 ). The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO 2 capacity . Chem. Commun. 51 ( 61 ): 12178 – 12181 . 10.1039/C5CC04680G CASPubMedWeb of Science®Google Scholar Kamal , K. , Bustam , M.A. , Ismail , M. et al. ( 2020 ). Optimization of washing processes in solvothermal synthesis of nickel-based MOF-74 . Materials 13 ( 12 ): 2741 . 10.3390/ma13122741 CASPubMedWeb of Science®Google Scholar Feng , S.H. and Li , G.H. ( 2017 ). Chapter 4 - Hydrothermal and solvothermal syntheses . In: Modern Inorganic Synthetic Chemistry , 2 e (ed. R. Xu and Y. Xu ), 73 – 104 . Amsterdam : Elsevier . 10.1016/B978-0-444-63591-4.00004-5 Google Scholar Chen , W. , Du , L. , and Wu , C. ( 2020 ). Hydrothermal synthesis of MOFs . In: Metal-Organic Frameworks for Biomedical Applications , 141 – 157 . Elsevier . 10.1016/B978-0-12-816984-1.00009-3 Google Scholar Chalati , T. , Horcajada , P. , Gref , R. et al. ( 2011 ). Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A . J. Mater. Chem. 21 ( 7 ): 2220 – 2227 . 10.1039/C0JM03563G CASWeb of Science®Google Scholar Łuczak , J. , Kroczewska , M. , Baluk , M. et al. ( 2023 ). Morphology control through the synthesis of metal-organic frameworks . Adv. Colloid Interface Sci. 102864 . 10.1016/j.cis.2023.102864 PubMedGoogle Scholar Gaikwad , S. , Kim , S.-J. , and Han , S. ( 2020 ). Novel metal–organic framework of UTSA-16 (Zn) synthesized by a microwave method: outstanding performance for CO 2 capture with improved stability to acid gases . J. Ind. Eng. Chem. 87 : 250 – 263 . 10.1016/j.jiec.2020.04.015 CASWeb of Science®Google Scholar Gaikwad , S. and Han , S. ( 2019 ). A microwave method for the rapid crystallization of UTSA-16 with improved performance for CO 2 capture . Chem. Eng. J. 371 : 813 – 820 . 10.1016/j.cej.2019.04.112 CASWeb of Science®Google Scholar Khan , N.A. and Jhung , S.H. ( 2015 ). Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction . Coord. Chem. Rev. 285 : 11 – 23 . 10.1016/j.ccr.2014.10.008 CASWeb of Science®Google Scholar Mu , X. , Zhan , J. , Feng , X. et al. ( 2018 ). Exfoliation and modification of covalent organic frameworks by a green one-step strategy: Enhanced thermal, mechanical and flame retardant performances of biopolymer nanocomposite film . Composites Part A 110 : 162 – 171 . 10.1016/j.compositesa.2018.04.030 CASWeb of Science®Google Scholar Mao , H. , Li , S.-H. , Zhang , A.-S. et al. ( 2021 ). Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53 (Al) synthesized via high efficiency solvent-controlled microwave . Sep. Purif. Technol. 272 : 118813 . 10.1016/j.seppur.2021.118813 CASGoogle Scholar Vaitsis , C. , Sourkouni , G. , and Argirusis , C. ( 2019 ). Metal organic frameworks (MOFs) and ultrasound: a review . Ultrason. Sonochem. 52 : 106 – 119 . 10.1016/j.ultsonch.2018.11.004 CASPubMedWeb of Science®Google Scholar Masoomi , M.Y. , Bagheri , M. , and Morsali , A. ( 2016 ). High adsorption capacity of two Zn-based metal–organic frameworks by ultrasound assisted synthesis . Ultrason. Sonochem. 33 : 54 – 60 . 10.1016/j.ultsonch.2016.04.013 CASPubMedWeb of Science®Google Scholar Yao , Y. , Pan , Y. , and Liu , S. ( 2020 ). Power ultrasound and its applications: a state-of-the-art review . Ultrason. Sonochem. 62 : 104722 . 10.1016/j.ultsonch.2019.104722 CASPubMedWeb of Science®Google Scholar Pollet , B.G. and Ashokkumar , M. ( 2019 ). Introduction to Ultrasound, Sonochemistry and Sonoelectrochemistry . Springer Nature . 10.1007/978-3-030-25862-7 Google Scholar Zhang , F. , Zhou , T. , Liu , Y. , and Leng , J. ( 2015 ). Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed . Sci. Rep. 5 ( 1 ): 1 – 12 . Google Scholar Chatel , G. ( 2019 ). Sonochemistry in nanocatalysis: the use of ultrasound from the catalyst synthesis to the catalytic reaction . Curr. Opin. Green Sustainable Chem. 15 : 1 – 6 . 10.1016/j.cogsc.2018.07.004 Web of Science®Google Scholar Baumann , A.E. , Burns , D.A. , Liu , B. , and Thoi , V.S. ( 2019 ). Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices . Commun. Chem. 2 ( 1 ): 86 . 10.1038/s42004-019-0184-6 Web of Science®Google Scholar Li , G. , Xia , L. , Dong , J. et al. ( 2020 ). Chapter 10 - Metal-organic frameworks . In: Solid-Phase Extraction (ed. C.F. Poole ), 285 – 309 . Elsevier . 10.1016/B978-0-12-816906-3.00010-8 Google Scholar Zhou , H.-C. , Long , J.R. , and Yaghi , O.M. ( 2012 ). Introduction to Metal–Organic Frameworks , 673 – 674 . ACS Publications . Google Scholar MacGillivray , L.R. ( 2010 ). Metal-organic Frameworks: Design and Application . Wiley . 10.1002/9780470606858 Google Scholar Kitagawa , S. ( 2014 ). Metal–organic frameworks (MOFs) . Chem. Soc. Rev. 43 ( 16 ): 5415 – 5418 . 10.1039/C4CS90059F PubMedWeb of Science®Google Scholar Ha , J. , Lee , J.H. , and Moon , H.R. ( 2020 ). Alterations to secondary building units of metal–organic frameworks for the development of new functions . Inorg. Chem. Front. 7 ( 1 ): 12 – 27 . 10.1039/C9QI01119F CASGoogle Scholar Schoedel , A. ( 2020 ). Secondary building units of MOFs . In: Metal-Organic Frameworks for Biomedical Applications , 11 – 44 . Elsevier . 10.1016/B978-0-12-816984-1.00003-2 Google Scholar Cai , G. , Yan , P. , Zhang , L. et al. ( 2021 ). Metal–organic framework-based hierarchically porous materials: synthesis and applications . Chem. Rev. 121 ( 20 ): 12278 – 12326 . 10.1021/acs.chemrev.1c00243 CASPubMedWeb of Science®Google Scholar Gaikwad , R. , Gaikwad , S. , and Han , S. ( 2022 ). Bimetallic UTSA-16 (Zn, X; X= Mg, Mn, Cu) metal organic framework developed by a microwave method with improved CO 2 capture performances . J. Ind. Eng. Chem. 111 : 346 – 355 . 10.1016/j.jiec.2022.04.016 CASWeb of Science®Google Scholar Gaikwad , R. , Gaikwad , S. , Kim , Y. , and Han , S. ( 2021 ). Electrospun fiber mats with multistep seeded growth of UTSA-16 metal organic frameworks by microwave reaction with excellent CO 2 capture performance . Microporous Mesoporous Mater. 323 : 111233 . 10.1016/j.micromeso.2021.111233 CASWeb of Science®Google Scholar Jhung , S.-H. , Lee , J.-H. , and Chang , J.-S. ( 2005 ). Microwave synthesis of a nanoporous hybrid material, chromium trimesate . Bull. Korean Chem. Soc. 26 ( 6 ): 880 – 881 . 10.5012/bkcs.2005.26.6.880 CASGoogle Scholar Aguiar , L.W. , da Silva , C.T.P. , de Lima , H.H.C. et al. ( 2018 ). Evaluation of the synthetic methods for preparing metal organic frameworks with transition metals . AIMS Mater. Sci. 5 ( 3 ): 467 – 478 . 10.3934/matersci.2018.3.467 CASGoogle Scholar Ren , J. , Segakweng , T. , Langmi , H.W. et al. ( 2014 ). Microwave-assisted modulated synthesis of zirconium-based metal–organic framework (Zr-MOF) for hydrogen storage applications . Int. J. Mater. Res. 105 ( 5 ): 516 – 519 . 10.3139/146.111047 CASGoogle Scholar Minh , T.T. and Thien , T.V. ( 2017 ). Synthesis of metal-organic framework-199: comparison of microwave process and solvothermal process . Hue Univ. J. Sci. Nat. Sci. 126 ( 1C ): 107 – 116 . Google Scholar Taddei , M. , Dau , P.V. , Cohen , S.M. et al. ( 2015 ). Efficient microwave assisted synthesis of metal–organic framework UiO-66: optimization and scale up . Dalton Trans. 44 ( 31 ): 14019 – 14026 . 10.1039/C5DT01838B CASPubMedGoogle Scholar Gusain , D. and Bux , F. ( 2019 ). Synthesis of magnesium based metal organic framework by microwave hydrothermal process . Inorg. Chem. Commun. 101 : 172 – 176 . 10.1016/j.inoche.2019.01.034 CASGoogle Scholar Liang , W. and D'Alessandro , D.M. ( 2013 ). Microwave-assisted solvothermal synthesis of zirconium oxide based metal–organic frameworks . Chem. Commun. 49 ( 35 ): 3706 – 3708 . 10.1039/c3cc40368h CASPubMedWeb of Science®Google Scholar Wang , X.-F. , Zhang , Y.-B. , Huang , H. et al. ( 2008 ). Microwave-assisted solvothermal synthesis of a dynamic porous metal-carboxylate framework . Cryst. Growth Des. 8 ( 12 ): 4559 – 4563 . 10.1021/cg800623v CASGoogle Scholar Chen , C. , Feng , X. , Zhu , Q. et al. ( 2019 ). Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO 2 efficient capture . Inorg. Chem. 58
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董星星完成签到 ,获得积分10
刚刚
研友_n0gOKL发布了新的文献求助10
1秒前
1秒前
ding应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
rocky15应助科研通管家采纳,获得30
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
5秒前
6秒前
科研通AI2S应助震动的以蕊采纳,获得10
6秒前
张三发布了新的文献求助10
7秒前
科研通AI2S应助十七岁那年采纳,获得10
7秒前
害羞的依瑶完成签到,获得积分10
7秒前
马金华完成签到,获得积分10
9秒前
Jasper应助飞快的三问采纳,获得10
9秒前
丢丢儿完成签到 ,获得积分10
10秒前
10秒前
东莨菪碱发布了新的文献求助10
11秒前
现代起眸发布了新的文献求助20
13秒前
ChanAijia完成签到,获得积分20
13秒前
马里奥发布了新的文献求助10
17秒前
bkagyin应助小路采纳,获得10
18秒前
科目三应助街头巷尾cc采纳,获得10
19秒前
easonyyw完成签到 ,获得积分0
21秒前
weihe完成签到 ,获得积分10
21秒前
香蕉觅云应助朱飞凡采纳,获得10
24秒前
小鹿斑比完成签到,获得积分10
24秒前
张龙雨完成签到 ,获得积分10
24秒前
gjww应助妩媚的以寒采纳,获得10
25秒前
25秒前
26秒前
26秒前
可爱的函函应助权羿采纳,获得10
27秒前
29秒前
张龙雨关注了科研通微信公众号
29秒前
小路发布了新的文献求助10
30秒前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
Love and Friendship in the Western Tradition: From Plato to Postmodernity 500
Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2549707
求助须知:如何正确求助?哪些是违规求助? 2176999
关于积分的说明 5607542
捐赠科研通 1897873
什么是DOI,文献DOI怎么找? 947431
版权声明 565447
科研通“疑难数据库(出版商)”最低求助积分说明 504108