亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating Pan-genome, GWAS, and Interpretable Machine Learning to Prioritize Trait-Associated Structural Variations in Setaria italica

作者
Wenying Wang,Tianhao Wu,Guangyu Fan,Shuai Zhang,Songyu Liu,Shuqin Jiang,Qian Cheng,Yanfen Xu,Jianan Zhang,Xiangfeng Wang,Zhihai Zhao
出处
期刊:Plant communications [Elsevier]
卷期号:: 101626-101626
标识
DOI:10.1016/j.xplc.2025.101626
摘要

Structural variations (SVs), especially presence-absence variations (PAVs), play a crucial role in crop domestication and trait improvement. While pan-genome analysis provides an exhaustive view of PAVs, it is often limited by high costs and restricted sample sizes. Conversely, genome-wide association studies (GWAS) can effectively identify trait-marker associations in large populations but typically overlook PAVs and face challenges in distinguishing causal variants due to linkage disequilibrium. In this study, we performed de novo assembly of eight reference-quality foxtail millet (Setaria italica) genomes and constructed a graph-based pan-genome to systematically explore PAVs. We subsequently conducted GWAS with 344 millet accessions, targeting genomic regions associated with the color of the leaf, leaf sheath, and leaf pulvinus. Through the application of interpretable machine-learning models, we pinpointed large-effect variants within the 26.84-26.94 Mb region on chromosome 7, including a 5002-bp Copia element insertion among other key variants correlated with phenotypic variations in leaf color traits. This integrative approach combines the detailed variant detection capabilities of pan-genome analysis with the large-scale mapping potential of GWAS and enhances variant prioritization using interpretable machine learning, providing a cost-efficient yet effective framework for dissecting agronomic traits in crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
梅者如西发布了新的文献求助10
13秒前
20秒前
梅者如西完成签到,获得积分10
23秒前
24秒前
量子星尘发布了新的文献求助10
31秒前
复杂的傲柔完成签到 ,获得积分10
38秒前
Jasper应助科研通管家采纳,获得10
41秒前
41秒前
萝卜猪完成签到,获得积分10
44秒前
鱼贝贝完成签到 ,获得积分10
59秒前
1分钟前
贪玩藏今发布了新的文献求助10
1分钟前
李健应助贪玩藏今采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
Doc发布了新的文献求助10
2分钟前
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
2分钟前
努力努力再努力完成签到,获得积分10
2分钟前
2分钟前
ffsean发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
直率的雪巧完成签到,获得积分10
3分钟前
3分钟前
iyt完成签到,获得积分20
3分钟前
3分钟前
3分钟前
Jasper应助yyds采纳,获得10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470129
求助须知:如何正确求助?哪些是违规求助? 4573061
关于积分的说明 14337967
捐赠科研通 4500034
什么是DOI,文献DOI怎么找? 2465505
邀请新用户注册赠送积分活动 1453862
关于科研通互助平台的介绍 1428483