Optimal Generative Adversarial Network-Bidirectional Long Short-Term Memory-Based Byzantine Failure Prediction and Failure Tolerance in Cloud Computing

作者
R. Manju,B. MUTHUSENTHIL
出处
期刊:International Journal of Software Engineering and Knowledge Engineering [World Scientific]
标识
DOI:10.1142/s0218194025500998
摘要

The research leverages the Optimal Generative Adversarial Network (OGAN)-Bidirectional Long Short-Term Memory (BiLSTM) architecture towards present a novel framework for the prediction and tolerance of Byzantine failures in cloud computing. The input dataset, derived from the KDD dataset, undergoes meticulous preprocessing to eliminate redundant characteristics and outliers, employing the Min-max normalization approach. The preprocessed data can be then integrated into the Byzantine Failure Prediction Framework (BFPF) within the cloud environment. The OGAN-BiLSTM model, enhanced by the Improved Dwarf Mongoose Optimization (IDMO) Algorithm, is utilized aimed at optimal hyperparameter selection, significantly improving classifier performance, Byzantine Failure Prediction, and tolerance. For improved storage security, a two-way encryption scheme, as Modified Homomorphic Encryption Algorithm (MHEA) for secure non-intrusive data, and subsequently stored in a blockchain (BC) based cloud environment, is implemented. The innovation of the work lies in its unique combination of progressive technologies to improve cloud computing (CC). The suggested model's presentation is assessed utilizing a variety of measures, like sensitivity, recall, f-measure, specificity, accuracy, precision, and execution time. The projected paradigm will be incorporated into the Java development environment. The accuracy of the suggested model for CC Byzantine failure prediction and tolerance is 98.69%. The suggested approach improves data security in cloud environments and greatly increases the accuracy of failure predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
浮游应助哭泣凌雪采纳,获得10
1秒前
希望天下0贩的0应助阿良采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
gaugua发布了新的文献求助10
1秒前
黑怕完成签到,获得积分10
2秒前
平常的如凡完成签到,获得积分10
2秒前
2秒前
2秒前
ASD发布了新的文献求助10
2秒前
研友_GZbjPZ发布了新的文献求助10
3秒前
3秒前
3秒前
仇文琪完成签到,获得积分10
3秒前
3秒前
安逸发布了新的文献求助10
3秒前
4秒前
打打应助尤寄风采纳,获得10
4秒前
医路前行发布了新的文献求助10
4秒前
FC关闭了FC文献求助
5秒前
李龙波发布了新的文献求助10
5秒前
CYF发布了新的文献求助10
6秒前
浪哩个浪关注了科研通微信公众号
6秒前
小白发布了新的文献求助10
6秒前
Xiongtao发布了新的文献求助10
6秒前
君莫笑完成签到 ,获得积分10
6秒前
6秒前
dodox发布了新的文献求助20
6秒前
FashionBoy应助畅快的白枫采纳,获得10
6秒前
火星上的白凡完成签到 ,获得积分20
7秒前
乐乐应助笑点低的发夹采纳,获得10
7秒前
可一发布了新的文献求助10
7秒前
mxq完成签到,获得积分10
8秒前
寒冷鹏煊发布了新的文献求助10
8秒前
慕青应助BowieHuang采纳,获得10
8秒前
老默发布了新的文献求助10
8秒前
silence完成签到,获得积分10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513050
求助须知:如何正确求助?哪些是违规求助? 4607382
关于积分的说明 14504952
捐赠科研通 4542911
什么是DOI,文献DOI怎么找? 2489237
邀请新用户注册赠送积分活动 1471256
关于科研通互助平台的介绍 1443307