Research on an unsupervised person re-identification based on image quality enhancement method

计算机科学 人工智能 聚类分析 模式识别(心理学) 鉴定(生物学) 秩(图论) 特征提取 无监督学习 计算机视觉 数学 植物 生物 组合数学
作者
Zhangang Hao,Hongwei Ge,Jiajian Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106392-106392 被引量:4
标识
DOI:10.1016/j.engappai.2023.106392
摘要

Research on person re-identification(Re-ID) has important value in pedestrian detection, target tracking, criminal investigation, and other related fields. In unsupervised pedestrian recognition algorithms, the accuracy of pseudo-labels is crucial to the recognition results. However, in practical scenarios, low-quality images caused by factors such as differences in camera resolution and shooting angles can affect the extraction of pedestrian features by these algorithms, thereby negatively impacting the accuracy of the labels and the learning process of the model. To address this problem, we propose an image quality enhancement algorithm for unsupervised person Re-ID (IQE). To the best of our knowledge, this study is the first to introduce detail enhancement and the application of low-light enhancement algorithms into unsupervised person Re-ID. By improving the feature extraction quality based on these two aspects, higher-quality pseudo-labels can be constructed. This method improves the accuracy of feature extraction and clustering, thereby increasing the accuracy of pseudo-labels and reducing the interference of noisy pseudo-labels. The experimental results showed that the IQE method outperformed state-of-the-art person Re-ID methods in terms of Rank-1 accuracy and mAP. Specifically, IQE achieved an 87.9% rank-1 accuracy and a 71.2% mAP on the Market-1501 dataset; a 78.1% rank-1 accuracy and a 61.7% mAP On the DukeMTMC-reID dataset; and a 51.1% rank-1 accuracy and 24.2% mAP on the MSMT17 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美平彤完成签到 ,获得积分10
刚刚
橘子发布了新的文献求助10
1秒前
浮游应助xh采纳,获得10
1秒前
瘦瘦小萱完成签到,获得积分10
2秒前
3秒前
支吾猪发布了新的文献求助10
4秒前
4秒前
幸福的蜜粉完成签到,获得积分10
4秒前
Gulu_完成签到 ,获得积分10
5秒前
6秒前
科研通AI2S应助ss采纳,获得10
7秒前
bkagyin应助自由马儿采纳,获得10
7秒前
8秒前
幽默的涵山完成签到,获得积分10
8秒前
8秒前
无线电报完成签到,获得积分10
9秒前
zhengzhao完成签到,获得积分10
9秒前
科研通AI6应助libra采纳,获得10
9秒前
汉堡包应助霸气映之采纳,获得10
9秒前
善学以致用应助song采纳,获得10
9秒前
子建发布了新的文献求助10
10秒前
12秒前
Haoru应助wtg采纳,获得30
13秒前
Frozen发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
完美世界应助陈文文采纳,获得10
14秒前
16秒前
16秒前
已白头完成签到,获得积分10
17秒前
齿瑛完成签到,获得积分10
17秒前
孙文慧完成签到,获得积分20
17秒前
浮游应助ss采纳,获得10
17秒前
董羽佳完成签到,获得积分10
17秒前
19秒前
重要从灵完成签到,获得积分10
20秒前
孙同学完成签到 ,获得积分10
23秒前
23秒前
英俊的铭应助李子潭采纳,获得10
23秒前
24秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641246
求助须知:如何正确求助?哪些是违规求助? 4756025
关于积分的说明 15012634
捐赠科研通 4799678
什么是DOI,文献DOI怎么找? 2565518
邀请新用户注册赠送积分活动 1523794
关于科研通互助平台的介绍 1483473