Research on an unsupervised person re-identification based on image quality enhancement method

计算机科学 人工智能 聚类分析 模式识别(心理学) 鉴定(生物学) 秩(图论) 特征提取 无监督学习 计算机视觉 数学 植物 生物 组合数学
作者
Zhangang Hao,Hongwei Ge,Jiajian Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106392-106392 被引量:4
标识
DOI:10.1016/j.engappai.2023.106392
摘要

Research on person re-identification(Re-ID) has important value in pedestrian detection, target tracking, criminal investigation, and other related fields. In unsupervised pedestrian recognition algorithms, the accuracy of pseudo-labels is crucial to the recognition results. However, in practical scenarios, low-quality images caused by factors such as differences in camera resolution and shooting angles can affect the extraction of pedestrian features by these algorithms, thereby negatively impacting the accuracy of the labels and the learning process of the model. To address this problem, we propose an image quality enhancement algorithm for unsupervised person Re-ID (IQE). To the best of our knowledge, this study is the first to introduce detail enhancement and the application of low-light enhancement algorithms into unsupervised person Re-ID. By improving the feature extraction quality based on these two aspects, higher-quality pseudo-labels can be constructed. This method improves the accuracy of feature extraction and clustering, thereby increasing the accuracy of pseudo-labels and reducing the interference of noisy pseudo-labels. The experimental results showed that the IQE method outperformed state-of-the-art person Re-ID methods in terms of Rank-1 accuracy and mAP. Specifically, IQE achieved an 87.9% rank-1 accuracy and a 71.2% mAP on the Market-1501 dataset; a 78.1% rank-1 accuracy and a 61.7% mAP On the DukeMTMC-reID dataset; and a 51.1% rank-1 accuracy and 24.2% mAP on the MSMT17 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
打打应助Halo_Dai采纳,获得10
刚刚
shanshan3000完成签到,获得积分10
1秒前
ZZICU完成签到,获得积分10
1秒前
Hello应助小胡同学采纳,获得10
1秒前
闻疏发布了新的文献求助10
1秒前
2秒前
郑友盛发布了新的文献求助10
3秒前
hanmmm发布了新的文献求助10
3秒前
科研通AI6应助迪迪张采纳,获得10
3秒前
4秒前
天才包发布了新的文献求助40
4秒前
科研破忒头完成签到,获得积分10
4秒前
田様应助是鹤采纳,获得10
4秒前
4秒前
pnn_1214发布了新的文献求助10
4秒前
Owen应助shanshan3000采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
kyf完成签到,获得积分10
7秒前
BiuBiu怪完成签到,获得积分10
7秒前
guozizi举报求助违规成功
7秒前
秀丽小猫咪举报求助违规成功
7秒前
yyds举报求助违规成功
7秒前
7秒前
英姑应助Fine采纳,获得10
8秒前
科目三应助淡淡的鸽子采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
乔乔乔发布了新的文献求助10
9秒前
9秒前
小雨发布了新的文献求助10
9秒前
9秒前
旦皋发布了新的文献求助10
10秒前
kyf发布了新的文献求助30
12秒前
852应助椰汁采纳,获得10
12秒前
左语完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601362
求助须知:如何正确求助?哪些是违规求助? 4686881
关于积分的说明 14846604
捐赠科研通 4680822
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506197
关于科研通互助平台的介绍 1471293