亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on an unsupervised person re-identification based on image quality enhancement method

计算机科学 人工智能 聚类分析 模式识别(心理学) 鉴定(生物学) 秩(图论) 特征提取 无监督学习 计算机视觉 数学 植物 生物 组合数学
作者
Zhangang Hao,Hongwei Ge,Jiajian Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106392-106392 被引量:4
标识
DOI:10.1016/j.engappai.2023.106392
摘要

Research on person re-identification(Re-ID) has important value in pedestrian detection, target tracking, criminal investigation, and other related fields. In unsupervised pedestrian recognition algorithms, the accuracy of pseudo-labels is crucial to the recognition results. However, in practical scenarios, low-quality images caused by factors such as differences in camera resolution and shooting angles can affect the extraction of pedestrian features by these algorithms, thereby negatively impacting the accuracy of the labels and the learning process of the model. To address this problem, we propose an image quality enhancement algorithm for unsupervised person Re-ID (IQE). To the best of our knowledge, this study is the first to introduce detail enhancement and the application of low-light enhancement algorithms into unsupervised person Re-ID. By improving the feature extraction quality based on these two aspects, higher-quality pseudo-labels can be constructed. This method improves the accuracy of feature extraction and clustering, thereby increasing the accuracy of pseudo-labels and reducing the interference of noisy pseudo-labels. The experimental results showed that the IQE method outperformed state-of-the-art person Re-ID methods in terms of Rank-1 accuracy and mAP. Specifically, IQE achieved an 87.9% rank-1 accuracy and a 71.2% mAP on the Market-1501 dataset; a 78.1% rank-1 accuracy and a 61.7% mAP On the DukeMTMC-reID dataset; and a 51.1% rank-1 accuracy and 24.2% mAP on the MSMT17 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
缥缈雯发布了新的文献求助10
9秒前
gexzygg应助科研通管家采纳,获得10
16秒前
gexzygg应助科研通管家采纳,获得10
16秒前
shhoing应助科研通管家采纳,获得10
16秒前
CodeCraft应助池雨采纳,获得10
18秒前
gexzygg应助缥缈雯采纳,获得10
20秒前
28秒前
30秒前
tyr001完成签到,获得积分10
35秒前
akiyy发布了新的文献求助10
35秒前
40秒前
akiyy完成签到,获得积分10
41秒前
42秒前
池雨发布了新的文献求助10
43秒前
tyr001发布了新的文献求助10
47秒前
赘婿应助黎子酱采纳,获得10
1分钟前
万邦德完成签到,获得积分10
1分钟前
Emma完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
长易发布了新的文献求助10
2分钟前
在水一方应助长易采纳,获得10
2分钟前
3分钟前
烟花应助科研通管家采纳,获得30
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
Yolanda_Xu完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
nxy完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549249
求助须知:如何正确求助?哪些是违规求助? 4634593
关于积分的说明 14634874
捐赠科研通 4576049
什么是DOI,文献DOI怎么找? 2509476
邀请新用户注册赠送积分活动 1485332
关于科研通互助平台的介绍 1456512