Research on an unsupervised person re-identification based on image quality enhancement method

计算机科学 人工智能 聚类分析 模式识别(心理学) 鉴定(生物学) 秩(图论) 特征提取 无监督学习 计算机视觉 数学 植物 生物 组合数学
作者
Zhangang Hao,Hongwei Ge,Jiajian Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106392-106392 被引量:4
标识
DOI:10.1016/j.engappai.2023.106392
摘要

Research on person re-identification(Re-ID) has important value in pedestrian detection, target tracking, criminal investigation, and other related fields. In unsupervised pedestrian recognition algorithms, the accuracy of pseudo-labels is crucial to the recognition results. However, in practical scenarios, low-quality images caused by factors such as differences in camera resolution and shooting angles can affect the extraction of pedestrian features by these algorithms, thereby negatively impacting the accuracy of the labels and the learning process of the model. To address this problem, we propose an image quality enhancement algorithm for unsupervised person Re-ID (IQE). To the best of our knowledge, this study is the first to introduce detail enhancement and the application of low-light enhancement algorithms into unsupervised person Re-ID. By improving the feature extraction quality based on these two aspects, higher-quality pseudo-labels can be constructed. This method improves the accuracy of feature extraction and clustering, thereby increasing the accuracy of pseudo-labels and reducing the interference of noisy pseudo-labels. The experimental results showed that the IQE method outperformed state-of-the-art person Re-ID methods in terms of Rank-1 accuracy and mAP. Specifically, IQE achieved an 87.9% rank-1 accuracy and a 71.2% mAP on the Market-1501 dataset; a 78.1% rank-1 accuracy and a 61.7% mAP On the DukeMTMC-reID dataset; and a 51.1% rank-1 accuracy and 24.2% mAP on the MSMT17 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容的玉米完成签到,获得积分10
刚刚
FashionBoy应助lawang采纳,获得10
1秒前
英俊的铭应助lawang采纳,获得10
1秒前
李爱国应助lawang采纳,获得10
1秒前
李健应助lawang采纳,获得30
1秒前
完美世界应助lawang采纳,获得10
1秒前
1秒前
我是老大应助lawang采纳,获得10
1秒前
领导范儿应助lawang采纳,获得10
1秒前
JamesPei应助lawang采纳,获得10
1秒前
深情安青应助lawang采纳,获得10
1秒前
汉堡包应助lawang采纳,获得10
1秒前
1秒前
123完成签到,获得积分10
2秒前
爆米花应助芝麻小粉采纳,获得10
2秒前
3秒前
3秒前
苹果绝山发布了新的文献求助10
3秒前
pluto应助zzulyy采纳,获得10
4秒前
zsq应助文件撤销了驳回
6秒前
Liuxinyiliu完成签到,获得积分10
6秒前
机智绝悟完成签到,获得积分10
6秒前
情怀应助负责的方盒采纳,获得10
7秒前
7秒前
7秒前
Owen应助包包92采纳,获得10
7秒前
Feathamity发布了新的文献求助10
8秒前
power完成签到 ,获得积分10
9秒前
ZZ完成签到,获得积分10
9秒前
ueue发布了新的文献求助30
9秒前
323431完成签到,获得积分10
10秒前
10秒前
小菜发布了新的文献求助10
12秒前
yue发布了新的文献求助10
14秒前
充电宝应助yuwen采纳,获得10
14秒前
慕青应助负责的方盒采纳,获得10
14秒前
16秒前
乐悠L完成签到 ,获得积分10
16秒前
LG发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675058
求助须知:如何正确求助?哪些是违规求助? 4942863
关于积分的说明 15151208
捐赠科研通 4834311
什么是DOI,文献DOI怎么找? 2589377
邀请新用户注册赠送积分活动 1542953
关于科研通互助平台的介绍 1500969