Research on an unsupervised person re-identification based on image quality enhancement method

计算机科学 人工智能 聚类分析 模式识别(心理学) 鉴定(生物学) 秩(图论) 特征提取 无监督学习 计算机视觉 数学 植物 生物 组合数学
作者
Zhangang Hao,Hongwei Ge,Jiajian Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106392-106392 被引量:4
标识
DOI:10.1016/j.engappai.2023.106392
摘要

Research on person re-identification(Re-ID) has important value in pedestrian detection, target tracking, criminal investigation, and other related fields. In unsupervised pedestrian recognition algorithms, the accuracy of pseudo-labels is crucial to the recognition results. However, in practical scenarios, low-quality images caused by factors such as differences in camera resolution and shooting angles can affect the extraction of pedestrian features by these algorithms, thereby negatively impacting the accuracy of the labels and the learning process of the model. To address this problem, we propose an image quality enhancement algorithm for unsupervised person Re-ID (IQE). To the best of our knowledge, this study is the first to introduce detail enhancement and the application of low-light enhancement algorithms into unsupervised person Re-ID. By improving the feature extraction quality based on these two aspects, higher-quality pseudo-labels can be constructed. This method improves the accuracy of feature extraction and clustering, thereby increasing the accuracy of pseudo-labels and reducing the interference of noisy pseudo-labels. The experimental results showed that the IQE method outperformed state-of-the-art person Re-ID methods in terms of Rank-1 accuracy and mAP. Specifically, IQE achieved an 87.9% rank-1 accuracy and a 71.2% mAP on the Market-1501 dataset; a 78.1% rank-1 accuracy and a 61.7% mAP On the DukeMTMC-reID dataset; and a 51.1% rank-1 accuracy and 24.2% mAP on the MSMT17 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
乐乐应助王粒伊采纳,获得10
刚刚
刚刚
可爱的函函应助黄家宝采纳,获得10
2秒前
mg应助自由的骁采纳,获得10
2秒前
文献狗完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
香蕉觅云应助WSY采纳,获得10
3秒前
Clown完成签到,获得积分10
3秒前
3秒前
布布发布了新的文献求助10
4秒前
长孙千筹完成签到,获得积分10
5秒前
5秒前
5秒前
fifteen发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
BINGBING1230发布了新的文献求助10
8秒前
无心的闭月完成签到,获得积分10
8秒前
8秒前
丘比特应助zeefly7采纳,获得10
9秒前
9秒前
9秒前
lhy发布了新的文献求助10
10秒前
11秒前
cdsd发布了新的文献求助10
11秒前
王粒伊发布了新的文献求助10
11秒前
12秒前
科目三应助Judy采纳,获得10
13秒前
14秒前
桐桐应助想发好文章采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
科研通AI2S应助笑开口采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5491528
求助须知:如何正确求助?哪些是违规求助? 4589949
关于积分的说明 14428449
捐赠科研通 4522201
什么是DOI,文献DOI怎么找? 2477761
邀请新用户注册赠送积分活动 1462901
关于科研通互助平台的介绍 1435597