Research on an unsupervised person re-identification based on image quality enhancement method

计算机科学 人工智能 聚类分析 模式识别(心理学) 鉴定(生物学) 秩(图论) 特征提取 无监督学习 计算机视觉 数学 植物 生物 组合数学
作者
Zhangang Hao,Hongwei Ge,Jiajian Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106392-106392 被引量:4
标识
DOI:10.1016/j.engappai.2023.106392
摘要

Research on person re-identification(Re-ID) has important value in pedestrian detection, target tracking, criminal investigation, and other related fields. In unsupervised pedestrian recognition algorithms, the accuracy of pseudo-labels is crucial to the recognition results. However, in practical scenarios, low-quality images caused by factors such as differences in camera resolution and shooting angles can affect the extraction of pedestrian features by these algorithms, thereby negatively impacting the accuracy of the labels and the learning process of the model. To address this problem, we propose an image quality enhancement algorithm for unsupervised person Re-ID (IQE). To the best of our knowledge, this study is the first to introduce detail enhancement and the application of low-light enhancement algorithms into unsupervised person Re-ID. By improving the feature extraction quality based on these two aspects, higher-quality pseudo-labels can be constructed. This method improves the accuracy of feature extraction and clustering, thereby increasing the accuracy of pseudo-labels and reducing the interference of noisy pseudo-labels. The experimental results showed that the IQE method outperformed state-of-the-art person Re-ID methods in terms of Rank-1 accuracy and mAP. Specifically, IQE achieved an 87.9% rank-1 accuracy and a 71.2% mAP on the Market-1501 dataset; a 78.1% rank-1 accuracy and a 61.7% mAP On the DukeMTMC-reID dataset; and a 51.1% rank-1 accuracy and 24.2% mAP on the MSMT17 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助老解采纳,获得10
刚刚
丘比特应助buluo采纳,获得10
1秒前
1秒前
1秒前
皮皮发布了新的文献求助10
1秒前
panpanda发布了新的文献求助10
1秒前
asdfzxcv应助LaKI采纳,获得10
2秒前
无梦亦无影完成签到,获得积分10
5秒前
田様应助荀连虎采纳,获得10
5秒前
笑点低一手完成签到,获得积分10
5秒前
飞鱼发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
小鱼完成签到,获得积分10
7秒前
桑榆非晚完成签到,获得积分10
7秒前
7秒前
七七完成签到,获得积分10
8秒前
9秒前
搜集达人应助丘奇采纳,获得10
9秒前
ccm应助TS采纳,获得10
9秒前
10秒前
rock发布了新的文献求助30
10秒前
10秒前
11秒前
纪元龙完成签到,获得积分10
12秒前
12秒前
阿空空发布了新的文献求助30
12秒前
12秒前
zhouzhou完成签到,获得积分10
13秒前
14秒前
14秒前
朴素的愫完成签到 ,获得积分10
15秒前
15秒前
Evan发布了新的文献求助10
15秒前
瘦瘦亦绿发布了新的文献求助10
15秒前
嘉平卅一应助辛勤的乌采纳,获得10
16秒前
16秒前
辛辛完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646711
求助须知:如何正确求助?哪些是违规求助? 4772234
关于积分的说明 15036353
捐赠科研通 4805530
什么是DOI,文献DOI怎么找? 2569751
邀请新用户注册赠送积分活动 1526689
关于科研通互助平台的介绍 1485889