Research on an unsupervised person re-identification based on image quality enhancement method

计算机科学 人工智能 聚类分析 模式识别(心理学) 鉴定(生物学) 秩(图论) 特征提取 无监督学习 计算机视觉 数学 植物 生物 组合数学
作者
Zhangang Hao,Hongwei Ge,Jiajian Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106392-106392 被引量:4
标识
DOI:10.1016/j.engappai.2023.106392
摘要

Research on person re-identification(Re-ID) has important value in pedestrian detection, target tracking, criminal investigation, and other related fields. In unsupervised pedestrian recognition algorithms, the accuracy of pseudo-labels is crucial to the recognition results. However, in practical scenarios, low-quality images caused by factors such as differences in camera resolution and shooting angles can affect the extraction of pedestrian features by these algorithms, thereby negatively impacting the accuracy of the labels and the learning process of the model. To address this problem, we propose an image quality enhancement algorithm for unsupervised person Re-ID (IQE). To the best of our knowledge, this study is the first to introduce detail enhancement and the application of low-light enhancement algorithms into unsupervised person Re-ID. By improving the feature extraction quality based on these two aspects, higher-quality pseudo-labels can be constructed. This method improves the accuracy of feature extraction and clustering, thereby increasing the accuracy of pseudo-labels and reducing the interference of noisy pseudo-labels. The experimental results showed that the IQE method outperformed state-of-the-art person Re-ID methods in terms of Rank-1 accuracy and mAP. Specifically, IQE achieved an 87.9% rank-1 accuracy and a 71.2% mAP on the Market-1501 dataset; a 78.1% rank-1 accuracy and a 61.7% mAP On the DukeMTMC-reID dataset; and a 51.1% rank-1 accuracy and 24.2% mAP on the MSMT17 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dmeng发布了新的文献求助10
5秒前
李健应助安详的听白采纳,获得10
5秒前
小二郎应助SCI采纳,获得10
6秒前
liangdayi357完成签到,获得积分20
15秒前
曾经青柏完成签到,获得积分10
17秒前
18秒前
dmeng完成签到,获得积分10
18秒前
Xjx6519发布了新的文献求助20
20秒前
shhoing应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
延胡索应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
Mic应助科研通管家采纳,获得30
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
23秒前
无极微光应助科研通管家采纳,获得20
23秒前
无花果应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
24秒前
shhoing应助曾经青柏采纳,获得10
24秒前
千里发布了新的文献求助10
25秒前
28秒前
IanZ发布了新的文献求助30
30秒前
33秒前
33秒前
skycause完成签到,获得积分10
34秒前
yuyuyu发布了新的文献求助10
36秒前
上官若男应助傲娇的云朵采纳,获得10
38秒前
nmeiko发布了新的文献求助10
42秒前
单薄的寻桃给单薄的寻桃的求助进行了留言
45秒前
47秒前
内向汽车完成签到,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557689
求助须知:如何正确求助?哪些是违规求助? 4642768
关于积分的说明 14669036
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459538