Research on an unsupervised person re-identification based on image quality enhancement method

计算机科学 人工智能 聚类分析 模式识别(心理学) 鉴定(生物学) 秩(图论) 特征提取 无监督学习 计算机视觉 数学 植物 生物 组合数学
作者
Zhangang Hao,Hongwei Ge,Jiajian Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106392-106392 被引量:4
标识
DOI:10.1016/j.engappai.2023.106392
摘要

Research on person re-identification(Re-ID) has important value in pedestrian detection, target tracking, criminal investigation, and other related fields. In unsupervised pedestrian recognition algorithms, the accuracy of pseudo-labels is crucial to the recognition results. However, in practical scenarios, low-quality images caused by factors such as differences in camera resolution and shooting angles can affect the extraction of pedestrian features by these algorithms, thereby negatively impacting the accuracy of the labels and the learning process of the model. To address this problem, we propose an image quality enhancement algorithm for unsupervised person Re-ID (IQE). To the best of our knowledge, this study is the first to introduce detail enhancement and the application of low-light enhancement algorithms into unsupervised person Re-ID. By improving the feature extraction quality based on these two aspects, higher-quality pseudo-labels can be constructed. This method improves the accuracy of feature extraction and clustering, thereby increasing the accuracy of pseudo-labels and reducing the interference of noisy pseudo-labels. The experimental results showed that the IQE method outperformed state-of-the-art person Re-ID methods in terms of Rank-1 accuracy and mAP. Specifically, IQE achieved an 87.9% rank-1 accuracy and a 71.2% mAP on the Market-1501 dataset; a 78.1% rank-1 accuracy and a 61.7% mAP On the DukeMTMC-reID dataset; and a 51.1% rank-1 accuracy and 24.2% mAP on the MSMT17 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文静竹发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
TongVS发布了新的文献求助10
1秒前
Biophysics完成签到,获得积分10
1秒前
1秒前
axiba发布了新的文献求助10
1秒前
2秒前
脑洞疼应助5搞一个采纳,获得10
2秒前
共享精神应助木木酱采纳,获得10
3秒前
JamesPei应助筱12采纳,获得10
3秒前
3秒前
3秒前
桐桐应助素心采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
希望天下0贩的0应助旺仔采纳,获得10
5秒前
April发布了新的文献求助10
5秒前
在水一方应助lip采纳,获得10
6秒前
铁臂阿童木发布了新的文献求助280
6秒前
小蘑菇应助丘奇采纳,获得10
7秒前
apathy完成签到,获得积分10
7秒前
7秒前
kk发布了新的文献求助10
7秒前
于秀丽完成签到,获得积分10
8秒前
8秒前
8秒前
无花果应助Richard采纳,获得20
9秒前
月中天梧桐栖完成签到,获得积分10
9秒前
自然的荠发布了新的文献求助10
10秒前
10秒前
10秒前
ableyy发布了新的文献求助10
10秒前
科研通AI6应助科研小白采纳,获得10
10秒前
小方发布了新的文献求助10
11秒前
11秒前
东方元语应助老北京采纳,获得20
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5701917
求助须知:如何正确求助?哪些是违规求助? 5145831
关于积分的说明 15235668
捐赠科研通 4856925
什么是DOI,文献DOI怎么找? 2606129
邀请新用户注册赠送积分活动 1557402
关于科研通互助平台的介绍 1515244