Research on an unsupervised person re-identification based on image quality enhancement method

计算机科学 人工智能 聚类分析 模式识别(心理学) 鉴定(生物学) 秩(图论) 特征提取 无监督学习 计算机视觉 数学 植物 生物 组合数学
作者
Zhangang Hao,Hongwei Ge,Jiajian Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106392-106392 被引量:4
标识
DOI:10.1016/j.engappai.2023.106392
摘要

Research on person re-identification(Re-ID) has important value in pedestrian detection, target tracking, criminal investigation, and other related fields. In unsupervised pedestrian recognition algorithms, the accuracy of pseudo-labels is crucial to the recognition results. However, in practical scenarios, low-quality images caused by factors such as differences in camera resolution and shooting angles can affect the extraction of pedestrian features by these algorithms, thereby negatively impacting the accuracy of the labels and the learning process of the model. To address this problem, we propose an image quality enhancement algorithm for unsupervised person Re-ID (IQE). To the best of our knowledge, this study is the first to introduce detail enhancement and the application of low-light enhancement algorithms into unsupervised person Re-ID. By improving the feature extraction quality based on these two aspects, higher-quality pseudo-labels can be constructed. This method improves the accuracy of feature extraction and clustering, thereby increasing the accuracy of pseudo-labels and reducing the interference of noisy pseudo-labels. The experimental results showed that the IQE method outperformed state-of-the-art person Re-ID methods in terms of Rank-1 accuracy and mAP. Specifically, IQE achieved an 87.9% rank-1 accuracy and a 71.2% mAP on the Market-1501 dataset; a 78.1% rank-1 accuracy and a 61.7% mAP On the DukeMTMC-reID dataset; and a 51.1% rank-1 accuracy and 24.2% mAP on the MSMT17 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助不倦采纳,获得10
刚刚
刚刚
科研通AI6应助LH采纳,获得20
刚刚
JamesPei应助LH采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
星辰大海应助Kane采纳,获得10
1秒前
sunshine完成签到,获得积分10
1秒前
sun完成签到,获得积分10
2秒前
Pepsi发布了新的文献求助10
2秒前
2秒前
彭Prrrr完成签到,获得积分10
2秒前
3秒前
於傲松完成签到,获得积分10
3秒前
小鱼完成签到,获得积分10
3秒前
3秒前
噔噔蹬发布了新的文献求助10
3秒前
李小二完成签到,获得积分10
3秒前
潜龙发布了新的文献求助10
3秒前
3秒前
xucc完成签到,获得积分10
4秒前
平凡中的限量版完成签到,获得积分10
4秒前
沈绘绘完成签到,获得积分10
4秒前
4秒前
Akim应助bluer采纳,获得10
4秒前
5秒前
deacle完成签到,获得积分10
5秒前
Belle发布了新的文献求助10
5秒前
Ruuko完成签到,获得积分10
5秒前
Orange应助卢宾采纳,获得100
6秒前
英姑应助宋祝福采纳,获得10
6秒前
泉水叮咚完成签到,获得积分10
6秒前
kk完成签到,获得积分10
6秒前
6秒前
6秒前
小西完成签到,获得积分10
6秒前
7秒前
Virginkiller1984完成签到 ,获得积分10
7秒前
852应助英俊凡波采纳,获得10
8秒前
充电宝应助优雅的招牌采纳,获得10
8秒前
abner发布了新的文献求助30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Strength and Conditioning in Sports From Science to Practice By Michael Stone, Timothy Suchomel, W. Hornsby, John Wagle, Aaron Cunanan Copyright 2022 600
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617479
求助须知:如何正确求助?哪些是违规求助? 4702043
关于积分的说明 14916312
捐赠科研通 4754093
什么是DOI,文献DOI怎么找? 2549658
邀请新用户注册赠送积分活动 1512450
关于科研通互助平台的介绍 1474224