Research on an unsupervised person re-identification based on image quality enhancement method

计算机科学 人工智能 聚类分析 模式识别(心理学) 鉴定(生物学) 秩(图论) 特征提取 无监督学习 计算机视觉 数学 植物 生物 组合数学
作者
Zhangang Hao,Hongwei Ge,Jiajian Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106392-106392 被引量:4
标识
DOI:10.1016/j.engappai.2023.106392
摘要

Research on person re-identification(Re-ID) has important value in pedestrian detection, target tracking, criminal investigation, and other related fields. In unsupervised pedestrian recognition algorithms, the accuracy of pseudo-labels is crucial to the recognition results. However, in practical scenarios, low-quality images caused by factors such as differences in camera resolution and shooting angles can affect the extraction of pedestrian features by these algorithms, thereby negatively impacting the accuracy of the labels and the learning process of the model. To address this problem, we propose an image quality enhancement algorithm for unsupervised person Re-ID (IQE). To the best of our knowledge, this study is the first to introduce detail enhancement and the application of low-light enhancement algorithms into unsupervised person Re-ID. By improving the feature extraction quality based on these two aspects, higher-quality pseudo-labels can be constructed. This method improves the accuracy of feature extraction and clustering, thereby increasing the accuracy of pseudo-labels and reducing the interference of noisy pseudo-labels. The experimental results showed that the IQE method outperformed state-of-the-art person Re-ID methods in terms of Rank-1 accuracy and mAP. Specifically, IQE achieved an 87.9% rank-1 accuracy and a 71.2% mAP on the Market-1501 dataset; a 78.1% rank-1 accuracy and a 61.7% mAP On the DukeMTMC-reID dataset; and a 51.1% rank-1 accuracy and 24.2% mAP on the MSMT17 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曹孟德啊发布了新的文献求助10
刚刚
充电宝应助许瑞琳采纳,获得10
刚刚
大模型应助喵典娜采纳,获得10
1秒前
didi发布了新的文献求助10
1秒前
Legend完成签到,获得积分10
1秒前
弱水完成签到,获得积分0
2秒前
Jasper应助sunyanghu369采纳,获得10
2秒前
金帛心兑完成签到,获得积分10
3秒前
3秒前
Lucas应助Maxpan采纳,获得10
4秒前
luck发布了新的文献求助10
4秒前
善学以致用应助乌梅不乌采纳,获得10
4秒前
4秒前
Selena完成签到,获得积分10
5秒前
ladder完成签到,获得积分10
5秒前
5秒前
月月完成签到,获得积分10
6秒前
6秒前
6秒前
学海无涯苦作舟完成签到,获得积分10
6秒前
Owen应助努力的欢欢采纳,获得10
6秒前
8秒前
斯文败类应助Mia采纳,获得10
8秒前
8秒前
Selena发布了新的文献求助20
8秒前
科研通AI6应助青草蛋糕采纳,获得100
8秒前
顾矜应助xueshu采纳,获得10
10秒前
10秒前
无极微光应助喜欢猫采纳,获得20
11秒前
璐璐发布了新的文献求助10
11秒前
11秒前
科研通AI6应助wlkk采纳,获得50
11秒前
文静的翠彤完成签到 ,获得积分10
11秒前
Ava应助dailj采纳,获得10
12秒前
GT关闭了GT文献求助
12秒前
Ava应助天马行空采纳,获得30
12秒前
13秒前
xw发布了新的文献求助10
13秒前
13秒前
平淡的画板完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618939
求助须知:如何正确求助?哪些是违规求助? 4703867
关于积分的说明 14924179
捐赠科研通 4758786
什么是DOI,文献DOI怎么找? 2550320
邀请新用户注册赠送积分活动 1513124
关于科研通互助平台的介绍 1474401