清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Compressing medical deep neural network models for edge devices using knowledge distillation

计算机科学 深度学习 人工神经网络 蒸馏 GSM演进的增强数据速率 人工智能 光学(聚焦) 边缘设备 深层神经网络 机器学习 云计算 操作系统 光学 物理 有机化学 化学
作者
F. MohiEldeen Alabbasy,A. S. Abohamama,Mohammed F. Alrahmawy
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:35 (7): 101616-101616 被引量:15
标识
DOI:10.1016/j.jksuci.2023.101616
摘要

Recently, deep neural networks (DNNs) have been used successfully in many fields, particularly, in medical diagnosis. However, deep learning (DL) models are expensive in terms of memory and computing resources, which hinders their implementation in limited-resources devices or for delay-sensitive systems. Therefore, these deep models need to be accelerated and compressed to smaller sizes to be deployed on edge devices without noticeably affecting their performance. In this paper, recent accelerating and compression approaches of DNN are analyzed and compared regarding their performance, applications, benefits, and limitations with a more focus on the knowledge distillation approach as a successful emergent approach in this field. In addition, a framework is proposed to develop knowledge distilled DNN models that can be deployed on fog/edge devices for automatic disease diagnosis. To evaluate the proposed framework, two compressed medical diagnosis systems are proposed based on knowledge distillation deep neural models for both COVID-19 and Malaria. The experimental results show that these knowledge distilled models have been compressed by 18.4% and 15% of the original model and their responses accelerated by 6.14x and 5.86%, respectively, while there were no significant drop in their performance (dropped by 0.9% and 1.2%, respectively). Furthermore, the distilled models are compared with other pruned and quantized models. The obtained results revealed the superiority of the distilled models in terms of compression rates and response time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医研发布了新的文献求助10
2秒前
飞飞style发布了新的文献求助10
10秒前
科研通AI6应助飞飞style采纳,获得10
24秒前
32秒前
有害学术辣鸡完成签到 ,获得积分10
51秒前
pegasus0802完成签到,获得积分10
1分钟前
曦耀发布了新的文献求助30
1分钟前
完美世界应助西门晴采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
菜鸟学习完成签到 ,获得积分10
2分钟前
2分钟前
西门晴发布了新的文献求助10
2分钟前
汉堡包应助Jenny采纳,获得10
2分钟前
3分钟前
春夏爱科研完成签到,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
rrrrwq完成签到,获得积分20
4分钟前
rrrrwq发布了新的文献求助10
4分钟前
西门晴完成签到,获得积分10
4分钟前
飞飞style发布了新的文献求助10
4分钟前
谷之森完成签到,获得积分10
5分钟前
ccc完成签到 ,获得积分10
5分钟前
junjun2011完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
袁建波完成签到 ,获得积分10
6分钟前
Augustines完成签到,获得积分10
7分钟前
小巧的芙蓉完成签到,获得积分10
7分钟前
knight7m完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
桐桐应助眼睛大的松鼠采纳,获得10
8分钟前
脑洞疼应助危机的尔琴采纳,获得10
8分钟前
wangfaqing942完成签到 ,获得积分10
8分钟前
深情安青应助inRe采纳,获得10
8分钟前
wanci应助inRe采纳,获得10
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628431
求助须知:如何正确求助?哪些是违规求助? 4716950
关于积分的说明 14964262
捐赠科研通 4786167
什么是DOI,文献DOI怎么找? 2555660
邀请新用户注册赠送积分活动 1516899
关于科研通互助平台的介绍 1477502