A novel Greenness and Water Content Composite Index (GWCCI) for soybean mapping from single remotely sensed multispectral images

多光谱图像 遥感 归一化差异植被指数 粮食安全 天蓬 种植 环境科学 含水量 比例(比率) 土地覆盖 农业 计算机科学 地理 地图学 土地利用 叶面积指数 农学 生物 工程类 土木工程 考古 岩土工程
作者
Hui Chen,Huapeng Li,Zhao Liu,Ce Zhang,Shuqing Zhang,Peter M. Atkinson
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:295: 113679-113679 被引量:61
标识
DOI:10.1016/j.rse.2023.113679
摘要

As a critical source of food and one of the most economically significant crops in the world, soybean plays an important role in achieving food security. Large area accurate mapping of soybean has long been a vital, but challenging issue in remote sensing, relying heavily on large-volume and representative training samples, whose collection is time-consuming and inefficient, especially for large areas (e.g., national scale). Thus, methods are needed that can map soybean automatically and accurately from single-date remotely sensed imagery. In this research, a novel Greenness and Water Content Composite Index (GWCCI) was proposed to map soybean from just a single Sentinel-2 multispectral image in an end-to-end manner without employing training samples. By capitalizing on the product of the NDVI (related to greenness) and the short-wave infrared (SWIR) band (related to canopy water content), the GWCCI provides the required information with which to discriminate between soybean and other land cover types. The effectiveness of the proposed GWCCI was investigated in seven typical soybean planting regions within four major soybean-producing countries across the world (i.e., China, the United States, Brazil and Argentina), with diverse climates, cropping systems and agricultural landscapes. In the experiments, an optimal threshold of 0.17 was estimated and adopted by the GWCCI in the first study site (S1) in 2021, and then generalised to the other study sites over multiple years for soybean mapping. The GWCCI method achieved a consistently higher accuracy in 2021 compared to two conventional comparative classifiers (support vector machine (SVM) and random forest (RF)), with an average overall accuracy (OA) of 88.30% and a Kappa coefficient (k) of 0.77; significantly greater than those of RF (OA: 80.92%, k: 0.62) and SVM (OA: 80.29%, k: 0.60). Furthermore, the OA of the extended years was highly consistent with that of 2021 for study sites S2 to S7, demonstrating the great generalisation capability and robustness of the proposed approach over multiple years. The proposed GWCCI method is straightforward, reliable and robust, and represents an important step forward for mapping soybean, one of the most significant crops grown globally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵梦秋发布了新的文献求助10
1秒前
2秒前
Linson发布了新的文献求助10
4秒前
SYY完成签到,获得积分10
5秒前
ahq发布了新的文献求助10
5秒前
somnus_fu发布了新的文献求助50
5秒前
citrus完成签到,获得积分10
6秒前
南京必吃发布了新的文献求助10
6秒前
7秒前
QiLe完成签到 ,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
11秒前
风中冰香应助WZ采纳,获得10
12秒前
12秒前
完美世界应助somnus_fu采纳,获得10
13秒前
Hello应助Evander采纳,获得10
14秒前
香蕉诗蕊给爱喷火的小恐龙的求助进行了留言
14秒前
倪倪发布了新的文献求助30
14秒前
16秒前
mera发布了新的文献求助30
16秒前
3sigma发布了新的文献求助10
17秒前
20秒前
20秒前
21秒前
22秒前
24秒前
无花果应助Qwe采纳,获得10
24秒前
24秒前
fuyu98发布了新的文献求助30
26秒前
Evander发布了新的文献求助10
26秒前
lemon发布了新的文献求助10
28秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
ccm应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
yzm发布了新的文献求助10
29秒前
29秒前
心心应助科研通管家采纳,获得10
29秒前
abccd123完成签到,获得积分10
29秒前
今后应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073