对分布函数
统计物理学
不对称
粘结长度
蒙特卡罗方法
离子键合
分布函数
格子(音乐)
密度泛函理论
集群扩展
材料科学
化学物理
物理
化学
计算化学
分子
热力学
离子
数学
量子力学
统计
声学
作者
Nathan J. Szymanski,Zhengyan Lun,Jue Liu,Ethan C. Self,Christopher J. Bartel,Jagjit Nanda,Bin Ouyang,Gerbrand Ceder
标识
DOI:10.1021/acs.chemmater.2c03827
摘要
Pair distribution function (PDF) analysis is a powerful technique for the characterization of short-range order (SRO) in disordered materials. Accurate interpretation of experimental PDF data is critically reliant on the development of structural models that can account for local variations in site occupancies and bond lengths. To this end, we outline an approach to model SRO using first-principles calculations based on the cluster-expansion formalism. These methods are validated on neutron scattering data from two disordered rocksalt oxyfluorides, Li1.3Mn0.4Ti0.3O1.7F0.3 and Li1.3Mn0.4Nb0.2Ti0.1O1.7F0.3. For each composition, we demonstrate that an average structure without any SRO fails to reproduce several key features in the experimental PDF. To pinpoint the origin of the suspected SRO in these materials, configurational and displacive effects were separately investigated using two disparate models. Special quasi-random structures were relaxed using density functional theory to account for local changes in bond lengths while maintaining a near-random ionic configuration. This leads to slightly improved accuracy but still misrepresents asymmetry in the first few peaks of the PDF. Monte Carlo simulations were performed to model configurational SRO on a fixed lattice, which by itself is shown to have a minimal influence on the PDF. Instead, we find that it is the bond length relaxations within environments created by SRO which controls the details of the PDF, thereby highlighting the subtle but important coupling between configurational and displacive SRO in disordered materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI