Deep Reference Frame Generation Method for VVC Inter Prediction Enhancement

参考坐标系 计算机科学 运动补偿 光流 冗余(工程) 运动矢量 人工智能 编码(社会科学) 运动估计 计算机视觉 帧间 帧(网络) 电信 数学 图像(数学) 操作系统 统计
作者
Jianghao Jia,Yuantong Zhang,Han Zhu,Zhenzhong Chen,Zizheng Liu,Xiaozhong Xu,Shan Liu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 3111-3124 被引量:6
标识
DOI:10.1109/tcsvt.2023.3299410
摘要

In video coding, inter prediction aims to reduce temporal redundancy by using previously encoded frames as references. The quality of reference frames is crucial to the performance of inter prediction. This paper presents a deep reference frame generation method to optimize the inter prediction in Versatile Video Coding (VVC). Specifically, reconstructed frames are sent to a well-designed frame generation network to synthesize a picture similar to the current encoding frame. The synthesized picture serves as an additional reference frame inserted into the reference picture list (RPL) to provide a more reliable reference for subsequent motion estimation (ME) and motion compensation (MC). The frame generation network employs optical flow to predict motion precisely. Moreover, an optical flow reorganization strategy is proposed to enable bi-directional and uni-directional predictions with only a single network architecture. To reasonably apply our method to VVC, we further introduce a normative modification of the temporal motion vector prediction (TMVP). Integrated into the VVC reference software VTM-15.0, the deep reference frame generation method achieves coding efficiency improvements of 5.22%, 3.61%, and 3.83% for the Y component under random access (RA), low delay B (LDB), and low delay P (LDP) configurations, respectively. The proposed method has been discussed in Joint Video Exploration Team (JVET) meeting and is currently part of Exploration Experiments (EE) for further study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦觅荷完成签到,获得积分10
刚刚
啦啦啦123发布了新的文献求助10
刚刚
mage发布了新的文献求助10
1秒前
有足量NaCl发布了新的文献求助10
2秒前
sugar发布了新的文献求助10
2秒前
pluvia完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
谨慎的宝贝完成签到,获得积分10
5秒前
gyro发布了新的文献求助10
6秒前
6秒前
JamesPei应助zgm断翅蝴蝶采纳,获得20
6秒前
啦啦啦123完成签到,获得积分10
6秒前
xzy发布了新的文献求助10
7秒前
8秒前
gyro完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
Fox完成签到,获得积分20
14秒前
15秒前
15秒前
忽昨日完成签到,获得积分10
15秒前
54完成签到,获得积分10
16秒前
科研通AI2S应助机灵柚子采纳,获得10
16秒前
H的流年发布了新的文献求助10
17秒前
17秒前
17秒前
1111完成签到,获得积分10
17秒前
脑洞疼应助林夕采纳,获得10
18秒前
18秒前
sugar完成签到,获得积分10
19秒前
19秒前
19秒前
完美世界应助Fox采纳,获得10
20秒前
20秒前
我是老大应助你好帅的哦采纳,获得10
21秒前
www发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871122
求助须知:如何正确求助?哪些是违规求助? 3413294
关于积分的说明 10683711
捐赠科研通 3137724
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834633
科研通“疑难数据库(出版商)”最低求助积分说明 781250