YOLO-FA: Type-1 fuzzy attention based YOLO detector for vehicle detection

计算机科学 人工智能 模糊逻辑 探测器 光学(聚焦) 卷积神经网络 模式识别(心理学) 计算机视觉 电信 光学 物理
作者
Kang Li,Zhiwei Lü,Lingyu Meng,Zhijian Gao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121209-121209 被引量:41
标识
DOI:10.1016/j.eswa.2023.121209
摘要

Vehicle detection is an important component of intelligent transportation systems and autonomous driving. However, in real-world vehicle detection scenarios, the presence of many complex and high uncertainty factors, such as illumination differences, motion blur, occlusion, weather, etc., makes accurate and real-time vehicle detection still challenging. In order to reduce the influence of these uncertainties in real scenarios and improve the accuracy and real-time performance of vehicle detection, this paper proposes a type-1 fuzzy attention (T1FA), in which fuzzy entropy is introduced to re-weight the feature map in order to reduce the uncertainty of the feature map and facilitates the detector's focus on the target center as a way to effectively improve the accuracy of vehicle detection. Furthermore, to detect vehicles with different sizes more effectively, mixed depth convolution in MetaFormer (MDFormer) is employed as a token mixer to capture multi-scale perceptual fields. And a novel YOLO detector based on fuzzy attention (YOLO-FA) is proposed. Experimental results show that T1FA can boost 3.2% AP50 on challenging vehicle detection dataset UA-DETRAC, which is better than other commonly used attention mechanisms, especially in scenarios of rain and nighttime with higher uncertainty by 4.2% and 8.1% AP50, respectively. Finally, without pretraining on extra data, YOLO-FA achieves 70.0% AP50 and 50.3% AP on UA-DETRAC, which achieves better balance between accuracy and speed compared with state-of-the-art detectors. The remarkable improvement of T1FA in different detectors and datasets also shows the considerable generalization of T1FA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BIN完成签到,获得积分10
1秒前
临诗完成签到,获得积分10
1秒前
1秒前
尛瞐慶成发布了新的文献求助10
1秒前
颖火虫发布了新的文献求助10
3秒前
3秒前
zhaozi发布了新的文献求助10
5秒前
veeinne发布了新的文献求助10
6秒前
bhc186发布了新的文献求助10
7秒前
Ava应助空禅yew采纳,获得10
7秒前
66完成签到 ,获得积分10
8秒前
11秒前
12秒前
段采萱完成签到,获得积分10
12秒前
丘比特应助文静灵阳采纳,获得10
13秒前
你倒是发啊完成签到,获得积分10
16秒前
顾矜应助颖火虫采纳,获得10
17秒前
17秒前
茉莉发布了新的文献求助10
17秒前
我产物呢完成签到,获得积分10
19秒前
major发布了新的文献求助10
19秒前
单纯清完成签到,获得积分20
20秒前
文静灵阳发布了新的文献求助10
20秒前
大模型应助veeinne采纳,获得10
20秒前
默幻弦完成签到,获得积分10
21秒前
bkagyin应助yy采纳,获得10
22秒前
Echo发布了新的文献求助10
22秒前
22秒前
Maestro_S应助奕逸采纳,获得20
22秒前
24秒前
24秒前
茉莉完成签到,获得积分10
25秒前
夏夏夏完成签到,获得积分10
25秒前
YY发布了新的文献求助10
25秒前
26秒前
英俊的铭应助Ink采纳,获得10
26秒前
颖火虫完成签到,获得积分10
27秒前
ZeSheng完成签到,获得积分10
28秒前
你说发布了新的文献求助10
28秒前
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789592
求助须知:如何正确求助?哪些是违规求助? 3334534
关于积分的说明 10270460
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761