YOLO-FA: Type-1 fuzzy attention based YOLO detector for vehicle detection

计算机科学 人工智能 模糊逻辑 探测器 光学(聚焦) 卷积神经网络 模式识别(心理学) 计算机视觉 电信 物理 光学
作者
Kang Li,Zhiwei Lü,Lingyu Meng,Zhijian Gao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121209-121209 被引量:71
标识
DOI:10.1016/j.eswa.2023.121209
摘要

Vehicle detection is an important component of intelligent transportation systems and autonomous driving. However, in real-world vehicle detection scenarios, the presence of many complex and high uncertainty factors, such as illumination differences, motion blur, occlusion, weather, etc., makes accurate and real-time vehicle detection still challenging. In order to reduce the influence of these uncertainties in real scenarios and improve the accuracy and real-time performance of vehicle detection, this paper proposes a type-1 fuzzy attention (T1FA), in which fuzzy entropy is introduced to re-weight the feature map in order to reduce the uncertainty of the feature map and facilitates the detector's focus on the target center as a way to effectively improve the accuracy of vehicle detection. Furthermore, to detect vehicles with different sizes more effectively, mixed depth convolution in MetaFormer (MDFormer) is employed as a token mixer to capture multi-scale perceptual fields. And a novel YOLO detector based on fuzzy attention (YOLO-FA) is proposed. Experimental results show that T1FA can boost 3.2% AP50 on challenging vehicle detection dataset UA-DETRAC, which is better than other commonly used attention mechanisms, especially in scenarios of rain and nighttime with higher uncertainty by 4.2% and 8.1% AP50, respectively. Finally, without pretraining on extra data, YOLO-FA achieves 70.0% AP50 and 50.3% AP on UA-DETRAC, which achieves better balance between accuracy and speed compared with state-of-the-art detectors. The remarkable improvement of T1FA in different detectors and datasets also shows the considerable generalization of T1FA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
thchiang发布了新的文献求助10
1秒前
要开心完成签到,获得积分10
2秒前
文静的白羊完成签到,获得积分10
2秒前
5秒前
我我我完成签到,获得积分10
7秒前
小西完成签到 ,获得积分10
8秒前
海洋球完成签到 ,获得积分10
8秒前
Liao完成签到,获得积分10
8秒前
oVUVo完成签到,获得积分10
8秒前
Adler完成签到,获得积分10
10秒前
会飞的生菜完成签到,获得积分10
11秒前
12秒前
liu发布了新的文献求助10
12秒前
善学以致用应助土豆采纳,获得10
13秒前
认真映真完成签到,获得积分10
13秒前
16秒前
Damon完成签到 ,获得积分10
17秒前
arisfield完成签到,获得积分10
17秒前
hhhhwl发布了新的文献求助10
18秒前
18秒前
20秒前
一丁点可爱完成签到,获得积分10
20秒前
lmz完成签到,获得积分10
20秒前
吃西瓜的维尼熊完成签到,获得积分10
21秒前
21秒前
爆米花完成签到,获得积分10
23秒前
23秒前
反杀闰土的猹完成签到,获得积分10
23秒前
liu完成签到,获得积分10
24秒前
消极sol完成签到,获得积分10
25秒前
26秒前
李洋发布了新的文献求助10
26秒前
完美世界应助张前采纳,获得10
26秒前
小杭76完成签到,获得积分0
27秒前
locker完成签到 ,获得积分10
27秒前
程程完成签到 ,获得积分10
29秒前
尚颖茹完成签到,获得积分10
29秒前
l1844852731完成签到 ,获得积分10
30秒前
合适的如天完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044838
求助须知:如何正确求助?哪些是违规求助? 4274315
关于积分的说明 13323674
捐赠科研通 4088088
什么是DOI,文献DOI怎么找? 2236731
邀请新用户注册赠送积分活动 1244114
关于科研通互助平台的介绍 1172128