Multi-sensor fusion rolling bearing intelligent fault diagnosis based on VMD and ultra-lightweight GoogLeNet in industrial environments

计算机科学 人工智能 断层(地质) 特征(语言学) 灰度 模式识别(心理学) 特征提取 方位(导航) 噪音(视频) 像素 语言学 图像(数学) 地质学 哲学 地震学
作者
Shouqi Wang,Zhigang Feng
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:145: 104306-104306 被引量:6
标识
DOI:10.1016/j.dsp.2023.104306
摘要

As artificial intelligence and sensor technology develop rapidly, intelligent fault diagnosis methods based on deep learning are widely used in industrial production. However, in practical industrial applications, the complex noise environment affects the performance of the diagnostic model, and the huge model parameters cannot meet the requirements of low cost and high performance in industrial production. To address the above problems, this paper proposes a lightweight intelligent fault diagnosis model using multi-sensor data fusion that not only meets the lightweight requirements of "small, light, and fast", but also realizes high accuracy diagnosis in noisy environments. Firstly, the vibration signals from different sensors of rolling bearings are processed using the variational mode decomposition (VMD) to design a unique method of constructing grayscale feature maps based on each intrinsic modal function (IMF) component. Then, the ultra-lightweight GoogLeNet model (UL-GoogLeNet) is constructed to adjust the traditional GoogLeNet structure, while the Ultra-lightweight subspace attention module (ULSAM) is introduced to reduce the model parameters and enhance the feature extraction capability. UL-GoogLeNet is trained and tested by dividing the grayscale feature maps into training and testing sets to realize the intelligent recognition of different fault types in rolling bearings. Experiments are conducted on two datasets and compared with multiple methods, and the final experimental results prove the effectiveness and superiority of the proposed method in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kuku完成签到,获得积分10
2秒前
颜色发布了新的文献求助10
2秒前
好名字发布了新的文献求助10
3秒前
小二郎应助幸福的凤灵采纳,获得10
5秒前
5秒前
6秒前
LI发布了新的文献求助10
6秒前
科研通AI5应助神秘玩家采纳,获得10
8秒前
依依完成签到,获得积分10
10秒前
哲000完成签到,获得积分10
11秒前
volcano完成签到 ,获得积分10
12秒前
田様应助yyc采纳,获得10
12秒前
13秒前
zcone完成签到,获得积分10
13秒前
江苏吴世勋完成签到,获得积分10
13秒前
DKW完成签到,获得积分20
13秒前
空白娃娃完成签到,获得积分10
14秒前
乐乐应助颜色采纳,获得10
14秒前
14秒前
顾矜应助LR采纳,获得10
15秒前
15秒前
小二郎应助wang5945采纳,获得10
16秒前
16秒前
Lucas应助眼药水采纳,获得10
18秒前
20秒前
DKW发布了新的文献求助10
20秒前
20秒前
sin完成签到 ,获得积分10
20秒前
神秘玩家发布了新的文献求助10
20秒前
坚强的安柏完成签到,获得积分10
21秒前
22秒前
桐桐应助笑点低慕灵采纳,获得10
22秒前
丞丞汁儿完成签到,获得积分20
23秒前
清新的万天完成签到,获得积分10
23秒前
24秒前
26秒前
抚琴祛魅发布了新的文献求助10
26秒前
yyc发布了新的文献求助10
26秒前
26秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799386
求助须知:如何正确求助?哪些是违规求助? 3344983
关于积分的说明 10322805
捐赠科研通 3061457
什么是DOI,文献DOI怎么找? 1680341
邀请新用户注册赠送积分活动 807036
科研通“疑难数据库(出版商)”最低求助积分说明 763462