SR-Unet: A Super-Resolution Algorithm for Ion Trap Mass Spectrometers Based on the Deep Neural Network

质谱法 四极离子阱 化学 离子阱 混合质谱仪 质谱 分辨率(逻辑) 质量 分析化学(期刊) 离子 分光计 四极杆质量分析仪 选择性反应监测 物理 光学 串联质谱法 色谱法 人工智能 计算机科学 有机化学
作者
Jiawen Ai,Weize Zhao,Quan Yu,Xiang Qian,Jianhua Zhou,Xinming Huo,Fei Tang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (47): 17407-17415
标识
DOI:10.1021/acs.analchem.3c04172
摘要

The mass spectrometer is an important tool for modern chemical analysis and detection. Especially, the emergence of miniature mass spectrometers has provided new tools for field analysis and detection. The resolution of a mass spectrometer reflects the ability of the instrument to discriminate between adjacent mass-to-charge ratio ions, and the higher the resolution, the better the discrimination of complex mixtures. Quadrupole ion traps are generally considered as a low-resolution mass spectrometry method, but they have gained wide attention and development in recent years because of their suitability for miniaturization and high qualitative capability. For an ion trap mass spectrometer, the mass sensitivity and resolution can be mutually constrained and need to be balanced by setting an appropriate scanning speed. In this study, a super-resolution U-net algorithm (SR-Unet) is proposed for ion trap mass spectrometry, which can estimate the possible ions from the overlapping ion peaks of low-resolution spectra and improve the equivalent resolution while ensuring sufficient sensitivity and analysis speed of the instrument. By determining the mass spectra of a linear ion trap mass spectrometer (LTQ XL) in Turbo and Normal scan modes, the same unit mass resolution as that at a scan speed of 16,667 Da/s was successfully obtained at 125,000 Da/s. Also, the experiments demonstrated that the algorithm is capable of the mass-to-charge ratio and instrument migration. SR-Unet can be migrated and applied to a miniature mass spectrometer for cruise detection of volatile organic compounds (VOCs), and the identification of VOC species in Photochemical Assessment Monitoring Stations (PAMS) was improved from 31 to 50 species with the same monitoring and analysis speed requirement. Further, super-unit mass resolution peptide detection was achieved on a miniature mass spectrometer with the help of the SR-Unet algorithm, which reduced the full width at half-maxima (FWHM) of bradykinin divalent ions (m/z 531) from 0.35 to 0.15 Da at a scan speed of 375 Da/s and improved the equivalent resolution to 3540. The proposed method provides a new idea to enhance the field mixture detection capability of miniature ion trap mass spectrometers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依古比古完成签到 ,获得积分10
1秒前
伊yan完成签到 ,获得积分10
1秒前
徐茂瑜完成签到 ,获得积分10
1秒前
699565完成签到,获得积分10
2秒前
Bennyz完成签到,获得积分10
3秒前
仿生人发布了新的文献求助10
4秒前
李成恩完成签到 ,获得积分10
5秒前
蓉儿完成签到 ,获得积分10
6秒前
复杂棒球完成签到 ,获得积分10
7秒前
小二郎应助周小鱼采纳,获得10
15秒前
21秒前
mojomars完成签到,获得积分10
23秒前
lixinlong完成签到,获得积分10
23秒前
24秒前
天玄一刀完成签到,获得积分10
24秒前
周小鱼发布了新的文献求助10
28秒前
正直的沛凝完成签到,获得积分10
28秒前
Jun完成签到,获得积分10
33秒前
乐乐完成签到,获得积分10
33秒前
lovexz完成签到,获得积分10
36秒前
38秒前
neil完成签到,获得积分10
39秒前
生生完成签到,获得积分10
41秒前
41秒前
完美世界应助123采纳,获得10
45秒前
犹豫的稀完成签到,获得积分10
46秒前
Owen应助xu采纳,获得10
46秒前
连难胜完成签到 ,获得积分10
47秒前
追寻书雁完成签到 ,获得积分10
48秒前
侯元正发布了新的文献求助10
48秒前
端庄的如花完成签到 ,获得积分10
49秒前
css完成签到,获得积分10
50秒前
大轩完成签到 ,获得积分10
54秒前
麦子完成签到 ,获得积分10
55秒前
正直的松鼠完成签到 ,获得积分10
57秒前
Dr_Stars完成签到,获得积分10
58秒前
1分钟前
1分钟前
gougou完成签到,获得积分10
1分钟前
郭俊秀完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798557
求助须知:如何正确求助?哪些是违规求助? 3344118
关于积分的说明 10318643
捐赠科研通 3060696
什么是DOI,文献DOI怎么找? 1679769
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353