Recent progress in digital image restoration techniques: A review

去模糊 图像复原 计算机科学 人工智能 卷积神经网络 数字图像 深度学习 数字成像 计算机视觉 图像处理 图像(数学)
作者
Aamir Wali,Asma Naseer,Maria Tamoor,S.A.M. Gilani
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:141: 104187-104187 被引量:17
标识
DOI:10.1016/j.dsp.2023.104187
摘要

Digital images are playing a progressively important role in almost all the fields such as computer science, medicine, communications, transmission, security, surveillance, and many more. Digital images are susceptible to a number of distortions due to faulty imaging instruments, transmission channels, atmospheric and environmental conditions, etc. resulting in degraded images. Degradation can be of different types such as noise, backscattering, low saturation, low contrast, tilt, spectral absorption, blurring, etc. The degradation reduces digital images' effectiveness and therefore needs to be restored. In this paper, we present an extensive review of image restoration tasks. It addresses problems like image deblurring, denoising, dehazing and super-resolution. Image restoration is fundamentally an image processing problem, but deep learning techniques, based mainly on convolutional neural networks have received a lot of attention in almost all areas of computer science. Along with deep learning, other machine learning methods have also been tried for restoring digital images. In this review, we have therefore categorized digital image restoration techniques as either image processing-based, machine learning-based or deep learning-based. For each category, a variety of approaches presented in recent years have been reviewed. This review also includes a summary of the data sets used for image restoration along with a baseline reference that can be used by future researchers to compare and improve their results. We also suggest some interesting research directions for future work in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Solar energy发布了新的文献求助10
刚刚
余味应助雪白的山雁采纳,获得10
2秒前
小小完成签到 ,获得积分10
3秒前
3秒前
学术小垃圾完成签到,获得积分10
7秒前
明某到此一游完成签到 ,获得积分10
7秒前
7秒前
乐人完成签到 ,获得积分10
9秒前
嘻嘻哈哈啊完成签到 ,获得积分10
10秒前
鲤角兽完成签到,获得积分10
12秒前
甜甜的以筠完成签到 ,获得积分10
12秒前
呢喃完成签到,获得积分10
12秒前
江左侠客完成签到,获得积分10
12秒前
陈鹿华完成签到 ,获得积分10
13秒前
假装学霸完成签到 ,获得积分10
13秒前
彭于晏应助merry6669采纳,获得10
13秒前
正经大善人完成签到,获得积分10
14秒前
轻松初阳完成签到 ,获得积分10
15秒前
怡然猎豹完成签到,获得积分10
20秒前
小桥人独立完成签到 ,获得积分10
23秒前
清爽幻竹完成签到,获得积分10
26秒前
26秒前
白桃乌龙完成签到,获得积分10
27秒前
ding应助lvsehx采纳,获得10
28秒前
道友等等我完成签到,获得积分0
29秒前
信封完成签到 ,获得积分10
30秒前
阿克图尔斯·蒙斯克完成签到,获得积分10
31秒前
xunl完成签到,获得积分10
32秒前
勤劳绿毛龟完成签到,获得积分10
33秒前
Aboweb完成签到 ,获得积分10
35秒前
35秒前
tutu完成签到,获得积分10
39秒前
Aboweb关注了科研通微信公众号
39秒前
眼睛大迎波完成签到,获得积分10
39秒前
li发布了新的文献求助10
39秒前
852应助科研通管家采纳,获得10
40秒前
田様应助科研通管家采纳,获得10
40秒前
科研通AI5应助科研通管家采纳,获得30
40秒前
Abi完成签到,获得积分10
42秒前
Joy完成签到,获得积分10
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798557
求助须知:如何正确求助?哪些是违规求助? 3344128
关于积分的说明 10318663
捐赠科研通 3060696
什么是DOI,文献DOI怎么找? 1679782
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353