Process mining and data mining applications in the domain of chronic diseases: A systematic review

计算机科学 过程采矿 背景(考古学) 过程(计算) 数据科学 数据挖掘 领域(数学) 医疗保健 在制品 工程类 业务流程管理 业务流程 生物 操作系统 经济增长 古生物学 经济 纯数学 数学 运营管理
作者
K.C. Chen,Farhad Abtahi,Juan Jesús Carrero,Carlos Fernández-Llatas,Fernando Seoane
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:144: 102645-102645 被引量:8
标识
DOI:10.1016/j.artmed.2023.102645
摘要

The widespread use of information technology in healthcare leads to extensive data collection, which can be utilised to enhance patient care and manage chronic illnesses. Our objective is to summarise previous studies that have used data mining or process mining methods in the context of chronic diseases in order to identify research trends and future opportunities. The review covers articles that pertain to the application of data mining or process mining methods on chronic diseases that were published between 2000 and 2022. Articles were sourced from PubMed, Web of Science, EMBASE, and Google Scholar based on predetermined inclusion and exclusion criteria. A total of 71 articles met the inclusion criteria and were included in the review. Based on the literature review results, we detected a growing trend in the application of data mining methods in diabetes research. Additionally, a distinct increase in the use of process mining methods to model clinical pathways in cancer research was observed. Frequently, this takes the form of a collaborative integration of process mining, data mining, and traditional statistical methods. In light of this collaborative approach, the meticulous selection of statistical methods based on their underlying assumptions is essential when integrating these traditional methods with process mining and data mining methods. Another notable challenge is the lack of standardised guidelines for reporting process mining studies in the medical field. Furthermore, there is a pressing need to enhance the clinical interpretation of data mining and process mining results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助张力采纳,获得10
2秒前
3秒前
xfy完成签到,获得积分10
4秒前
结实初翠完成签到,获得积分10
5秒前
冰魂应助RA000采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
满眼星辰发布了新的文献求助10
8秒前
weizhi完成签到,获得积分10
8秒前
Kikua应助科研通管家采纳,获得10
11秒前
11秒前
Kikua应助科研通管家采纳,获得10
11秒前
zhaoxi应助科研通管家采纳,获得20
11秒前
冰魂应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得30
11秒前
11秒前
Kikua应助科研通管家采纳,获得10
11秒前
watermelon完成签到,获得积分10
12秒前
oceanL完成签到,获得积分10
12秒前
别烦发布了新的文献求助10
13秒前
jay发布了新的文献求助10
14秒前
18秒前
18秒前
平常的毛豆应助吗喽采纳,获得10
18秒前
8R60d8应助可耐的凝琴采纳,获得10
20秒前
20秒前
20秒前
阿木木完成签到,获得积分10
21秒前
21秒前
23秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
wuhen完成签到,获得积分10
26秒前
闵卷发布了新的文献求助10
27秒前
li229完成签到,获得积分20
27秒前
28秒前
张力完成签到,获得积分20
29秒前
33秒前
34秒前
35秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865102
求助须知:如何正确求助?哪些是违规求助? 3407411
关于积分的说明 10654230
捐赠科研通 3131486
什么是DOI,文献DOI怎么找? 1727067
邀请新用户注册赠送积分活动 832124
科研通“疑难数据库(出版商)”最低求助积分说明 780166