MGRW-Transformer: Multigranularity Random Walk Transformer Model for Interpretable Learning

变压器 随机游动 计算机科学 人工智能 工程类 数学 电气工程 统计 电压
作者
Weiping Ding,Yu Geng,Jiashuang Huang,Hengrong Ju,Haipeng Wang,Chin‐Teng Lin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2023.3326283
摘要

Deep-learning models have been widely used in image recognition tasks due to their strong feature-learning ability. However, most of the current deep-learning models are "black box" systems that lack a semantic explanation of how they reached their conclusions. This makes it difficult to apply these methods to complex medical image recognition tasks. The vision transformer (ViT) model is the most commonly used deep-learning model with a self-attention mechanism that shows the region of influence as compared to traditional convolutional networks. Thus, ViT offers greater interpretability. However, medical images often contain lesions of variable size in different locations, which makes it difficult for a deep-learning model with a self-attention module to reach correct and explainable conclusions. We propose a multigranularity random walk transformer (MGRW-Transformer) model guided by an attention mechanism to find the regions that influence the recognition task. Our method divides the image into multiple subimage blocks and transfers them to the ViT module for classification. Simultaneously, the attention matrix output from the multiattention layer is fused with the multigranularity random walk module. Within the multigranularity random walk module, the segmented image blocks are used as nodes to construct an undirected graph using the attention node as a starting node and guiding the coarse-grained random walk. We appropriately divide the coarse blocks into finer ones to manage the computational cost and combine the results based on the importance of the discovered features. The result is that the model offers a semantic interpretation of the input image, a visualization of the interpretation, and insight into how the decision was reached. Experimental results show that our method improves classification performance with medical images while presenting an understandable interpretation for use by medical professionals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DINGXH完成签到,获得积分10
1秒前
小马甲应助leo采纳,获得10
2秒前
liz完成签到,获得积分10
2秒前
qs完成签到,获得积分10
3秒前
hohokuz完成签到,获得积分10
5秒前
活力妙芙完成签到,获得积分10
5秒前
HM发布了新的文献求助10
6秒前
尊敬亦寒发布了新的文献求助10
6秒前
所所应助嘻嘻采纳,获得10
6秒前
zjhzslq完成签到,获得积分10
7秒前
7秒前
大知闲闲完成签到 ,获得积分10
7秒前
jibo发布了新的文献求助10
8秒前
月亮完成签到 ,获得积分10
10秒前
mingqiao7发布了新的文献求助30
11秒前
11秒前
momo完成签到,获得积分10
11秒前
Kkyantong发布了新的文献求助10
12秒前
for_abSCI完成签到,获得积分10
18秒前
19秒前
青青完成签到 ,获得积分10
19秒前
xmz应助一直都不想上班采纳,获得10
20秒前
22秒前
22秒前
琴楼完成签到,获得积分10
23秒前
Andrew完成签到,获得积分10
23秒前
111完成签到,获得积分10
24秒前
张若旸完成签到 ,获得积分10
25秒前
26秒前
无限安蕾完成签到,获得积分10
27秒前
求知的周完成签到,获得积分10
27秒前
英姑应助Kkyantong采纳,获得10
27秒前
28秒前
29秒前
PWG完成签到,获得积分10
29秒前
嘻嘻发布了新的文献求助10
30秒前
VT完成签到,获得积分10
30秒前
31秒前
Huay完成签到 ,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782897
求助须知:如何正确求助?哪些是违规求助? 3328185
关于积分的说明 10235295
捐赠科研通 3043240
什么是DOI,文献DOI怎么找? 1670468
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759033