亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel study for depression detecting using audio signals based on graph neural network

计算机科学 图形 人工智能 模式识别(心理学) 特征向量 特征提取 理论计算机科学 语音识别
作者
Chenjian Sun,Min Jiang,Linlin Gao,Yu Xin,Yihong Dong
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:88: 105675-105675 被引量:13
标识
DOI:10.1016/j.bspc.2023.105675
摘要

Depression is a prevalent mental health disorder. The absence of specific biomarkers makes clinical diagnosis highly subjective. This makes it difficult to make a definitive diagnosis for the patient. Recently, deep learning methods have shown promise for depression detection. However, current methods tend to focus solely on the connections within or between audio signals, leading to limitations in the model’s ability to recognize depression-related cues in audio signals and affecting its classification performance. To address these limitations, we propose a graph neural network approach for depression recognition that incorporates potential connections within and between audio signals. Specifically, we first use a gated recurrent unit (GRU) to extract time-series information between frame-level features of audio signals. We then construct two graph neural network modules sequentially to explore the potential connections within and between audio signals. The first graph network module constructs a graph using the frame-level features of each audio sample as nodes. The output is obtained as a graph-embedded feature vector representation after the graph convolution layers. Subsequently, the output graph embedding feature vector representation of the first graph network model is used as the nodes of the graph to construct the second graph network. The internal relationship between audio signals is encoded by the property of node neighborhood information propagation. In addition, we use a pre-trained emotion recognition network to extract emotional features that are highly correlated with depression. By further strengthening the connection weights among nodes in the second graph network through a self-attention mechanism, relevant cues are provided for the model to complete depression detection from audio signals. We conducted extensive experiments on three depression datasets, including DAIC-WOZ, MODMA, and D-Vlog. The proposed model achieves better results on several performance evaluation metrics such as accuracy, F1-score, precision, and recall compared to all the compared algorithms, validating its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tonionnn完成签到,获得积分10
16秒前
AprilLeung完成签到 ,获得积分10
19秒前
vicky完成签到,获得积分10
23秒前
28秒前
平常紫安完成签到 ,获得积分10
29秒前
ablajan完成签到 ,获得积分10
30秒前
yehata发布了新的文献求助10
33秒前
Owen应助科研通管家采纳,获得10
35秒前
木人持心应助科研通管家采纳,获得10
36秒前
36秒前
lin完成签到 ,获得积分10
44秒前
44秒前
47秒前
夜莺应助似冷月追风采纳,获得20
47秒前
情怀应助yehata采纳,获得10
48秒前
LIU完成签到 ,获得积分10
48秒前
50秒前
李李李发布了新的文献求助100
51秒前
DJDJDDDJ发布了新的文献求助10
51秒前
kklkimo完成签到,获得积分10
51秒前
机灵的衬衫完成签到 ,获得积分10
53秒前
JamesPei应助机灵的幼菱采纳,获得10
57秒前
杨茗涵完成签到,获得积分10
1分钟前
科研通AI5应助典雅的俊驰采纳,获得10
1分钟前
小二郎应助李李李采纳,获得100
1分钟前
1分钟前
1分钟前
小蛮样完成签到,获得积分10
1分钟前
1分钟前
susui发布了新的文献求助10
1分钟前
李李李完成签到,获得积分10
1分钟前
机灵的幼菱完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
欣xin发布了新的文献求助10
1分钟前
水蜜桃一大钵完成签到,获得积分20
1分钟前
taku完成签到 ,获得积分10
1分钟前
李健应助1zzz采纳,获得30
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063743
求助须知:如何正确求助?哪些是违规求助? 4287199
关于积分的说明 13358537
捐赠科研通 4105349
什么是DOI,文献DOI怎么找? 2247991
邀请新用户注册赠送积分活动 1253539
关于科研通互助平台的介绍 1184706