WiFi-based human activity recognition through wall using deep learning

计算机科学 非视线传播 固件 无线 多径传播 深度学习 人工智能 信道状态信息 实时计算 频道(广播) 电信 计算机硬件
作者
Fahd Abuhoureyah,Yan Chiew Wong,Ahmad Sadhiqin Mohd Isira
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107171-107171 被引量:20
标识
DOI:10.1016/j.engappai.2023.107171
摘要

Wireless sensing is a promising method that integrates wireless mechanisms with strong sensing capabilities. The current focus of using WiFi Channel State Information (CSI) for human activity recognition (HAR) is the line-of-sight (LoS) path, which is mainly affected by human activities and is very sensitive to environmental changes. However, the signal on non-line-of-sight (nLoS) paths, particularly those passing through walls, is unpredictable due to the weak reflected signals destroyed by the wall. This work proposes a method to achieve high-accuracy wireless sensing based on CSI behavior recognition with low-cost resources by showing through-wall and wider-angle predictions using WiFi signals. The technique utilizes MIMO to exploit multipath propagation and increase the capability of signal transmission and receiving antennas. The signals captured by the multi-antenna are delivered into parallel channels with different spatial signatures. An RPi 4 B is attached to an ALFA AWUS 1900 adapter utilizing Nexmon firmware monitors and extracts CSI data with flexible C-based firmware for Broadcom/Cypress WiFi chips. Preprocessing techniques based on CSI are applied to improve the feature extraction from the amplitude data in an indoor environment. Furthermore, a deep learning algorithm based on RNN with an LSTM algorithm is used to classify the activity instances indoors, achieving up to 97.5% accuracy in classifying seven activities. The experiment shows CSI can achieve accurate wireless sensing in nLoS scenarios with extended antennas and a deep learning approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Olivia发布了新的文献求助10
3秒前
3秒前
3秒前
天天快乐应助学术熊采纳,获得10
5秒前
AC赵先生完成签到,获得积分10
6秒前
6秒前
我是老大应助乖加油采纳,获得10
6秒前
一味地丶逞强完成签到,获得积分10
7秒前
save发布了新的文献求助20
7秒前
297同学发布了新的文献求助10
8秒前
AC赵先生发布了新的文献求助10
9秒前
10秒前
科研通AI5应助Bressanone采纳,获得10
10秒前
chaiyuying发布了新的文献求助10
10秒前
SYLH应助乐观文轩采纳,获得10
12秒前
13秒前
14秒前
rainhowk完成签到,获得积分10
15秒前
学不完了发布了新的文献求助10
15秒前
16秒前
18秒前
情怀应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得30
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
INSAT完成签到,获得积分10
18秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
ZhouYW应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
ZhouYW应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
zheng发布了新的文献求助10
19秒前
桐桐应助小饼干采纳,获得10
19秒前
Olivia发布了新的文献求助10
21秒前
怕黑面包完成签到 ,获得积分10
22秒前
24秒前
Bressanone发布了新的文献求助10
25秒前
glj应助多肉提子胖伟采纳,获得10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797553
求助须知:如何正确求助?哪些是违规求助? 3342950
关于积分的说明 10314150
捐赠科研通 3059647
什么是DOI,文献DOI怎么找? 1679045
邀请新用户注册赠送积分活动 806303
科研通“疑难数据库(出版商)”最低求助积分说明 763078