亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering

计算机科学 编码器 人工智能 人工神经网络 可缩放矢量图形 模式识别(心理学) 图形 数据挖掘 算法 理论计算机科学 操作系统
作者
Lihong Peng,Xianzhi He,Xinhuai Peng,Zejun Li,Li Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107440-107440 被引量:31
标识
DOI:10.1016/j.compbiomed.2023.107440
摘要

Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background. We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots’ embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets. We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters. We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦XING完成签到 ,获得积分10
3秒前
陈彦希完成签到,获得积分20
3秒前
学术鸟完成签到 ,获得积分10
6秒前
12秒前
15秒前
多情向日葵完成签到,获得积分10
25秒前
可怜的课题组补助完成签到,获得积分20
42秒前
42秒前
asd完成签到,获得积分10
49秒前
Jianismye发布了新的文献求助10
51秒前
雪飞杨完成签到 ,获得积分10
57秒前
Simon应助香蕉海白采纳,获得20
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
英姑应助香蕉海白采纳,获得10
1分钟前
1分钟前
自然的清涟应助行人采纳,获得10
1分钟前
解语花完成签到,获得积分10
1分钟前
小马甲应助香蕉海白采纳,获得10
1分钟前
解语花发布了新的文献求助10
1分钟前
BBBBBlue先森应助解语花采纳,获得10
1分钟前
丘比特应助解语花采纳,获得30
1分钟前
斯文败类应助解语花采纳,获得30
1分钟前
蜗牛应助解语花采纳,获得10
1分钟前
852应助解语花采纳,获得10
1分钟前
浮游应助解语花采纳,获得30
1分钟前
tuanheqi应助解语花采纳,获得180
1分钟前
1分钟前
1分钟前
乐安发布了新的文献求助10
1分钟前
王大纯完成签到,获得积分20
1分钟前
hy发布了新的文献求助10
1分钟前
小底发布了新的文献求助10
1分钟前
思源应助小底采纳,获得10
1分钟前
脆脆发布了新的文献求助10
1分钟前
钟钟完成签到,获得积分10
1分钟前
1分钟前
研友_ngX12Z完成签到 ,获得积分10
1分钟前
吴迪发布了新的文献求助10
1分钟前
脆脆完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356725
求助须知:如何正确求助?哪些是违规求助? 4488472
关于积分的说明 13972162
捐赠科研通 4389438
什么是DOI,文献DOI怎么找? 2411558
邀请新用户注册赠送积分活动 1404080
关于科研通互助平台的介绍 1378081