STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering

计算机科学 编码器 人工智能 人工神经网络 可缩放矢量图形 模式识别(心理学) 图形 数据挖掘 算法 理论计算机科学 操作系统
作者
Lihong Peng,Xianzhi He,Xinhuai Peng,Zejun Li,Li Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107440-107440 被引量:22
标识
DOI:10.1016/j.compbiomed.2023.107440
摘要

Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background. We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots’ embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets. We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters. We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcx1995完成签到,获得积分10
2秒前
jayliu完成签到,获得积分10
2秒前
2秒前
Ink完成签到,获得积分20
7秒前
广州东站发布了新的文献求助10
8秒前
小薇丸子完成签到,获得积分10
9秒前
搞搞科研发布了新的文献求助10
10秒前
D33sama完成签到,获得积分10
11秒前
明亮晓旋发布了新的文献求助30
13秒前
13秒前
14秒前
研友_LN25rL完成签到,获得积分10
15秒前
坚若磐石完成签到,获得积分10
17秒前
17秒前
赘婿应助ywzwszl采纳,获得10
18秒前
我知道完成签到,获得积分10
18秒前
22秒前
kk完成签到,获得积分20
22秒前
22秒前
23秒前
kk发布了新的文献求助10
27秒前
29秒前
30秒前
艺善艺善亮晶晶完成签到,获得积分10
30秒前
32秒前
33秒前
33秒前
34秒前
飞太难完成签到,获得积分10
34秒前
领导范儿应助Survivor采纳,获得10
34秒前
35秒前
36秒前
胡周瑜发布了新的文献求助10
38秒前
欧小凡发布了新的社区帖子
38秒前
明亮晓旋完成签到,获得积分20
39秒前
南楼青主发布了新的文献求助10
40秒前
whilers发布了新的文献求助10
40秒前
41秒前
在水一方应助嘿嘿哈嘿88采纳,获得10
42秒前
烟花应助科研通管家采纳,获得10
42秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742