A Framework for Leveraging Interimage Information in Stereo Images for Enhanced Semantic Segmentation in Autonomous Driving

人工智能 计算机科学 计算机视觉 分割 单眼 机器人 图像分割 立体视觉 语义学(计算机科学) 程序设计语言
作者
Libo Sun,James Bockman,Changming Sun
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:4
标识
DOI:10.1109/tim.2023.3328708
摘要

Semantic segmentation is a crucial task with wide-ranging applications, including autonomous driving and robot navigation. However, prevailing state-of-the-art methods primarily focus on monocular images, neglecting the untapped potential of stereo cameras commonly equipped in autonomous vehicles and robots, which capture binocular images. In this article, we aim to introduce an innovative stereo-vision-based semantic segmentation framework that maximizes the utilization of stereo image data to enhance segmentation performance. Unlike conventional monocular approaches that only use one image, our method effectively uses both the images, exploiting interimage correspondences and harnessing previously neglected information. Our core innovations encompass label generation for right images, combined with stereo-vision-based information fusion. For label generation, we propose a novel technique to accurately generate labels for the right images in stereo pairs, even in scenarios with no direct annotations. This innovative approach empowers our models to effectively learn from a complete stereo dataset, enhancing their semantic segmentation capabilities. In addition, our stereo-vision-based information fusion framework seamlessly integrates features and spatial disparities from the binocular images, enabling our models to produce more accurate and contextually enriched semantic segmentation outputs. To validate the efficacy of our proposed approach, we conduct comprehensive experiments on the Cityscapes and KITTI datasets using diverse, well-known semantic segmentation architectures. The results unequivocally demonstrate the superiority and effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czz发布了新的文献求助10
刚刚
椰子冻完成签到,获得积分10
1秒前
1秒前
是瓜瓜不完成签到,获得积分10
1秒前
木偶人发布了新的文献求助10
2秒前
小许同学完成签到 ,获得积分10
2秒前
刘洋完成签到 ,获得积分10
3秒前
3秒前
熊二浪完成签到,获得积分10
4秒前
Zzz完成签到 ,获得积分10
5秒前
5秒前
kksk发布了新的文献求助10
5秒前
6秒前
木偶人完成签到,获得积分10
7秒前
大气蝴蝶发布了新的文献求助10
7秒前
Belinda完成签到,获得积分10
9秒前
jennifer发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
13秒前
hq完成签到 ,获得积分10
13秒前
幽默茈完成签到,获得积分10
13秒前
关键词发布了新的文献求助20
13秒前
小萝卜完成签到,获得积分10
14秒前
15秒前
愉快天亦完成签到,获得积分10
15秒前
大模型应助111采纳,获得50
15秒前
jackten完成签到,获得积分10
15秒前
研友_VZG7GZ应助czz采纳,获得10
16秒前
海的呼唤发布了新的文献求助10
17秒前
幽默茈发布了新的文献求助10
17秒前
搜集达人应助清风明月采纳,获得10
17秒前
18秒前
SYLH应助wodeqiche2007采纳,获得10
19秒前
LUAN发布了新的文献求助10
22秒前
23秒前
24秒前
xiaodong完成签到,获得积分10
25秒前
文艺鞋子完成签到 ,获得积分10
25秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797638
求助须知:如何正确求助?哪些是违规求助? 3343077
关于积分的说明 10314637
捐赠科研通 3059803
什么是DOI,文献DOI怎么找? 1679098
邀请新用户注册赠送积分活动 806343
科研通“疑难数据库(出版商)”最低求助积分说明 763102