材料科学
储能
陶瓷
电介质
微观结构
极化(电化学)
计算机数据存储
铁电性
电压
光电子学
纳米技术
复合材料
电气工程
计算机科学
功率(物理)
热力学
化学
操作系统
物理
工程类
物理化学
作者
Jiayue Song,Fei Yan,Jinfeng Lin,Guanglong Ge,Cheng Shi,Jin Qian,Yali Hao,Yongqi Wei,Wu Yao
标识
DOI:10.1016/j.cej.2023.145754
摘要
Fulfilling the stringent demand of the miniature and eco-friendly pulsed power devices, development of high-energy-storage lead-free dielectric energy storage is critical. To achieve this goal, the mature strategy is to induce the formation of relaxor polar nano regions (PNRs) by means of constructing multiple solid solutions and element doping, which will inevitably lead to a significantly weakened polarization. How to better achieve the domain regulation is a challenge. Here, we reconsidered binary composite-induced domain evolution and designed a novel BT-based binary system with Na0.7Bi0.1NbO3 (NBN) modification. By adjusting the NBN content to retain the long-range ferroelectric domains and applying the hot-pressing (HP) method to modulate grain size, the coupling of multi-scale domain morphology and voltage allocation can be achieved, simultaneously contributing to the high polarization, the enhanced breakdown strength and the optimized polarization response. Accordingly, a 130% enhancement to 5.32 J/cm3 in energy storage density, a high energy storage efficiency of ∼ 90%, an ultrafast discharge period of ∼ 55 ns, and a giant power density of ∼ 369.9 MW/cm3 were realized in our HP ceramics, superior to the existing dielectric ceramics. Moreover, the energy storage properties also exhibited superior frequency and thermal stability. The proposed synergistic optimization strategy of the domain morphology regulation and the microstructure adjustment is valuable for further energy storage design, and the enhanced energy storage properties promote the applications for lead-free dielectrics in energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI