Read-across-based intelligent learning: development of a global q-RASAR model for the efficient quantitative predictions of skin sensitization potential of diverse organic chemicals

皮肤致敏 敏化 数量结构-活动关系 适用范围 杠杆(统计) 离群值 偏最小二乘回归 计算机科学 数据挖掘 机器学习 人工智能 免疫学 生物
作者
Arkaprava Banerjee,Kunal Roy
出处
期刊:Environmental Science: Processes & Impacts [Royal Society of Chemistry]
卷期号:25 (10): 1626-1644 被引量:16
标识
DOI:10.1039/d3em00322a
摘要

Environmental chemicals and contaminants cause a wide array of harmful implications to terrestrial and aquatic life which ranges from skin sensitization to acute oral toxicity. The current study aims to assess the quantitative skin sensitization potential of a large set of industrial and environmental chemicals acting through different mechanisms using the novel quantitative Read-Across Structure-Activity Relationship (q-RASAR) approach. Based on the identified important set of structural and physicochemical features, Read-Across-based hyperparameters were optimized using the training set compounds followed by the calculation of similarity and error-based RASAR descriptors. Data fusion, further feature selection, and removal of prediction confidence outliers were performed to generate a partial least squares (PLS) q-RASAR model, followed by the application of various Machine Learning (ML) tools to check the quality of predictions. The PLS model was found to be the best among different models. A simple user-friendly Java-based software tool was developed based on the PLS model, which efficiently predicts the toxicity value(s) of query compound(s) along with their status of Applicability Domain (AD) in terms of leverage values. This model has been developed using structurally diverse compounds and is expected to predict efficiently and quantitatively the skin sensitization potential of environmental chemicals to estimate their occupational and health hazards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到,获得积分10
1秒前
自然的含蕾完成签到 ,获得积分10
3秒前
叽里呱啦完成签到 ,获得积分10
4秒前
6秒前
斯文败类应助nan采纳,获得30
7秒前
8秒前
WMT完成签到 ,获得积分10
8秒前
Gakay完成签到,获得积分10
9秒前
善良的剑通完成签到,获得积分10
10秒前
柠檬水不要柠檬完成签到,获得积分10
10秒前
11秒前
xiaoxiao发布了新的文献求助10
12秒前
Dr.L发布了新的文献求助10
13秒前
14秒前
15秒前
沉静的万天完成签到 ,获得积分10
17秒前
nan发布了新的文献求助30
19秒前
21秒前
文迪完成签到,获得积分10
21秒前
Dr.L完成签到,获得积分10
24秒前
25秒前
25秒前
yym发布了新的文献求助20
25秒前
陈住气完成签到,获得积分10
27秒前
高兴的彩虹完成签到,获得积分10
27秒前
Willy发布了新的文献求助10
29秒前
魏白晴发布了新的文献求助10
30秒前
xu完成签到,获得积分10
31秒前
豆豆欢欢乐完成签到 ,获得积分10
33秒前
gabee完成签到 ,获得积分10
34秒前
快乐的完成签到 ,获得积分10
35秒前
man完成签到 ,获得积分10
35秒前
37秒前
毛男完成签到,获得积分10
39秒前
你是谁完成签到,获得积分10
42秒前
666完成签到 ,获得积分10
42秒前
43秒前
cdercder应助高兴的彩虹采纳,获得20
46秒前
wxnice发布了新的文献求助10
48秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777767
求助须知:如何正确求助?哪些是违规求助? 3323293
关于积分的说明 10213450
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798152
科研通“疑难数据库(出版商)”最低求助积分说明 758275