Surpassing Substrate–Enzyme Competition by Compartmentalization

分区(防火) 基质(水族馆) 化学 生化工程 生物物理学 纳米技术 生物化学 生物 材料科学 生态学 工程类
作者
Eleftheria Diamanti,Daniel Andrés-Sanz,Alejandro H. Orrego,Susana Carregal‐Romero,Fernándo López-Gallego
出处
期刊:ACS Catalysis 卷期号:13 (17): 11441-11454 被引量:2
标识
DOI:10.1021/acscatal.3c01965
摘要

Enzyme compartmentalization is one of the main strategies exploited by nature to create physically separated chemical environments that allow simultaneous enzyme reactions within the cell metabolic networks. However, designing nanostructured architectures that mimic cellular compartments remains a challenge when two competing enzymes must work simultaneously over the same substrate. Herein, we develop a method to fabricate soft hybrids that physically separate two oxidoreductases that compete for NADH with greatly different kinetics. The less competitive enzyme is encapsulated into polymeric capsules capable of recruiting NADH, which are then assembled on porous agarose microbeads where the most competitive enzyme is immobilized. As a result, this functional hybrid enables the simultaneous action of two competing enzymes in the same reaction media, which would otherwise be impossible in a non-compartmentalized system. We demonstrate that substrate recruitment is a powerful approach to building up enzymatic reaction networks with complex dynamics. Moreover, single-particle analysis under operando conditions reveals the impact of enzyme spatial organization on the overall performance of these soft hybrids, underlining the importance of understanding the functional variability within compartmentalized systems. Finally, integrating this compartmentalized system into a model cell-free biosynthetic cascade, we transform vinyl acetate into (S)-β-hydroxybutyrate with a 2 times higher titer than the non-compartmentalized free system. The proposed strategy can be generalized to produce compartmentalized cell-free biosynthetic pathways and multienzyme cascades where enzyme competition is an issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放飞阳完成签到,获得积分10
1秒前
Qian发布了新的文献求助10
1秒前
跳跃发布了新的文献求助10
1秒前
leeyao发布了新的文献求助10
2秒前
无情夏槐发布了新的文献求助10
3秒前
张泽崇应助开放纹采纳,获得10
6秒前
zzz完成签到 ,获得积分10
6秒前
1-2yx完成签到,获得积分10
8秒前
小二郎应助123采纳,获得10
8秒前
9秒前
霸气的采文完成签到,获得积分10
10秒前
清风荷影完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
12秒前
Jiahui完成签到,获得积分10
12秒前
wanci应助重要的初晴采纳,获得10
12秒前
chengwanying发布了新的文献求助20
13秒前
15秒前
逆风的银杏树完成签到,获得积分10
15秒前
古茗会完成签到 ,获得积分10
15秒前
ZS0901完成签到,获得积分10
15秒前
16秒前
16秒前
一木张完成签到,获得积分10
16秒前
17秒前
cs发布了新的文献求助10
17秒前
FashionBoy应助务实大神采纳,获得10
18秒前
星流xx完成签到 ,获得积分10
19秒前
Mason发布了新的文献求助10
19秒前
研友_Lw4Ngn发布了新的文献求助10
19秒前
20秒前
21秒前
小尹同学应助xiutang采纳,获得30
21秒前
羚羊完成签到,获得积分10
24秒前
piu发布了新的文献求助10
24秒前
wwl发布了新的文献求助10
25秒前
25秒前
小可啊完成签到,获得积分10
25秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2421474
求助须知:如何正确求助?哪些是违规求助? 2111278
关于积分的说明 5344140
捐赠科研通 1838797
什么是DOI,文献DOI怎么找? 915376
版权声明 561171
科研通“疑难数据库(出版商)”最低求助积分说明 489550