已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel Model for Intelligent Pull-Ups Test Based on Key Point Estimation of Human Body and Equipment

计算机科学 人工智能 钥匙(锁) 分类器(UML) 姿势 软件 模拟 机器学习 实时计算 操作系统
作者
Guozhong Liu,Jian Wang,ZhiBo Zhang,Qingyi Liu,Yande Ren,Mengjiao Zhang,Chen Shan,Peirui Bai
出处
期刊:Mobile Information Systems [IOS Press]
卷期号:2023: 1-15 被引量:4
标识
DOI:10.1155/2023/3649217
摘要

Applying computer vision and machine learning techniques into sport tests is an effective way to realize “intelligent sports.” Facing practical application, we design a real-time and lightweight deep learning network to realize intelligent pull-ups test in this study. The main contributions are as follows: (1) a new self-produced pull-ups dataset is established under the requirement of including a human body and horizontal bar. In addition, a semiautomatic annotating software is developed to enhance annotation efficiency and increase labeling accuracy. (2) A novel lightweight deep network named PEPoseNet is designed to estimate and analyze a human pose in real time. The backbone of the network is made up of the heatmap network and key point network, which conduct human pose estimation based on the key points extracted from a human body and horizontal bar. The depth-wise separable convolution is adopted to speed up the training and convergence. (3) An evaluation criterion of intelligent pull-ups test is defined based on action quality assessment (AQA). The action quality of five states, i.e., ready or end, hang, pull, achieved, and resume in one pull-ups test cycle is automatically graded using a random forest classifier. A mobile application is developed to realize intelligent pull-ups test in real time. The performance of the proposed model and software is confirmed by verification and ablation experiments. The experimental results demonstrated that the proposed PEPoseNet has competitive performance to the state of the art. Its PCK @ 0.2 and frames per second (FPS) achieved were 83.8 and 30 fps, respectively. The mobile application has promising application prospects in pull-ups test under complex scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助fnder采纳,获得20
1秒前
学术通zzz发布了新的文献求助10
2秒前
2秒前
坚果发布了新的文献求助10
7秒前
激动的晓筠完成签到 ,获得积分10
17秒前
曾经的柏柳完成签到,获得积分10
19秒前
坚果完成签到,获得积分10
22秒前
22秒前
碳酸芙兰完成签到,获得积分10
22秒前
迅速冥茗完成签到,获得积分10
23秒前
ZhangDaying完成签到 ,获得积分10
25秒前
迷人的冰蓝完成签到,获得积分10
26秒前
CATH完成签到 ,获得积分10
26秒前
文艺的枫叶完成签到 ,获得积分10
28秒前
29秒前
猪猪hero应助HeiKol采纳,获得10
29秒前
竹筏过海应助旺仔先生采纳,获得30
31秒前
rayy完成签到,获得积分10
31秒前
若狂完成签到,获得积分10
32秒前
xf2285发布了新的文献求助10
35秒前
研友_VZG7GZ应助rayy采纳,获得10
36秒前
文子完成签到 ,获得积分10
37秒前
金水完成签到,获得积分10
42秒前
猪猪hero应助HeiKol采纳,获得10
44秒前
吹吹晚风完成签到,获得积分10
47秒前
科研通AI5应助Rex采纳,获得30
48秒前
49秒前
h0jian09完成签到,获得积分10
51秒前
神仙渔发布了新的文献求助10
55秒前
blueboom完成签到 ,获得积分10
55秒前
赘婿应助小彭友采纳,获得10
58秒前
金佛山的房间完成签到 ,获得积分10
58秒前
Moislad完成签到,获得积分10
1分钟前
yingpengyu完成签到,获得积分10
1分钟前
Jasper应助星期八采纳,获得10
1分钟前
1分钟前
1分钟前
William_l_c完成签到,获得积分10
1分钟前
露露发布了新的文献求助10
1分钟前
苗条丹南完成签到 ,获得积分10
1分钟前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819819
求助须知:如何正确求助?哪些是违规求助? 3362720
关于积分的说明 10418473
捐赠科研通 3080964
什么是DOI,文献DOI怎么找? 1694903
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768494