AFP-MFL: accurate identification of antifungal peptides using multi-view feature learning

抗真菌 鉴定(生物学) 计算机科学 特征(语言学) 机器学习 人工智能 数据挖掘 计算生物学 生物 语言学 植物 微生物学 哲学
作者
Yitian Fang,Fan Xu,Lesong Wei,Yi Jiang,Jie Chen,Leyi Wei,Dong‐Qing Wei
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:11
标识
DOI:10.1093/bib/bbac606
摘要

Recently, peptide-based drugs have gained unprecedented interest in discovering and developing antifungal drugs due to their high efficacy, broad-spectrum activity, low toxicity and few side effects. However, it is time-consuming and expensive to identify antifungal peptides (AFPs) experimentally. Therefore, computational methods for accurately predicting AFPs are highly required. In this work, we develop AFP-MFL, a novel deep learning model that predicts AFPs only relying on peptide sequences without using any structural information. AFP-MFL first constructs comprehensive feature profiles of AFPs, including contextual semantic information derived from a pre-trained protein language model, evolutionary information, and physicochemical properties. Subsequently, the co-attention mechanism is utilized to integrate contextual semantic information with evolutionary information and physicochemical properties separately. Extensive experiments show that AFP-MFL outperforms state-of-the-art models on four independent test datasets. Furthermore, the SHAP method is employed to explore each feature contribution to the AFPs prediction. Finally, a user-friendly web server of the proposed AFP-MFL is developed and freely accessible at http://inner.wei-group.net/AFPMFL/, which can be considered as a powerful tool for the rapid screening and identification of novel AFPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk完成签到,获得积分10
1秒前
孙畅完成签到,获得积分10
5秒前
打打应助嘎嘎楽采纳,获得10
6秒前
杨好圆完成签到,获得积分10
6秒前
7秒前
HY完成签到 ,获得积分10
7秒前
8秒前
10秒前
10秒前
PPPPP星星完成签到,获得积分10
11秒前
12秒前
12秒前
皮皮完成签到,获得积分10
12秒前
Jinnnnn完成签到 ,获得积分10
12秒前
昏睡的蟠桃应助新年快乐采纳,获得200
13秒前
13秒前
Zeng发布了新的文献求助10
13秒前
独狼发布了新的文献求助10
14秒前
深情安青应助inb采纳,获得10
14秒前
LLRO完成签到,获得积分10
15秒前
感动听蓉关注了科研通微信公众号
15秒前
15秒前
noozine发布了新的文献求助20
15秒前
16秒前
文安发布了新的文献求助10
17秒前
18秒前
狗熊也完成签到,获得积分10
19秒前
莫小乔斯发布了新的文献求助10
20秒前
20秒前
dddddd完成签到,获得积分10
22秒前
Ari发布了新的文献求助10
24秒前
gh完成签到,获得积分20
24秒前
24秒前
深情安青应助雁回采纳,获得10
25秒前
丫丫发布了新的文献求助10
25秒前
wangchangli完成签到,获得积分10
27秒前
Zeng完成签到 ,获得积分10
28秒前
感动听蓉发布了新的文献求助10
29秒前
wqkkk完成签到,获得积分10
29秒前
xzs发布了新的文献求助10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761