Balanced Ambipolar OECTs through Tunability of Blend Microstructure.

材料科学 微观结构 双极扩散 纳米技术 复合材料 电子 量子力学 物理
作者
Noam Moscovich,Sasha Simotko,Efrat Reyn,Ido Zerachia,Anton Hadăr,Gitti L. Frey
出处
期刊:PubMed
标识
DOI:10.1021/acsami.5c05400
摘要

Organic electrochemical transistors (OECTs) are promising building blocks for bioelectronics, bridging ionic biological signals and electronic circuits. Ambipolar OECTs, capable of both n- and p-type charge transport, are highly desirable for versatile bioelectronic applications, offering a simplified circuit design and enhanced sensing capabilities. However, achieving a balanced ambipolar performance remains a materials science challenge. Here we show that blending judiciously selected unipolar p-type and n-type organic mixed ionic-electronic conductors (OMIECs), and most importantly, tuning film microstructure through composition and thermal treatment, can be leveraged to attain balanced ambipolar OECTs with near-equal n-type and p-type performances, both in the transconductance and in symmetrical threshold voltages. This is demonstrated by studying two blends based on a p-type OMIEC polymer and two n-type OMIEC fullerene derivatives with distinct miscibility and self-assembly tendencies that direct completely different blend organizations. Employing comprehensive electrochemical and microstructural characterization, we were able to correlate microstructure features, such as phase separation, domain continuity, and crystallinity, with volumetric capacitance and charge mobility, and hence overall device performance in both polarities. Based on the insights gained in this study, we propose a set of design rules and a rational framework for realizing balanced ambipolar OECTs using the blend approach. These rules emphasize informed material selection and precise microstructure control of phase continuity and order, attainable through composition and thermal annealing. The blend strategy offers a facile and versatile pathway for advancing next-generation bioelectronic devices with multifunctional OECT performance through rational microstructure engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
plusweng完成签到 ,获得积分10
1秒前
唱跳双c完成签到,获得积分10
1秒前
zxc完成签到,获得积分10
2秒前
hetao286发布了新的文献求助100
2秒前
orixero应助huangpeihao采纳,获得10
2秒前
YW发布了新的文献求助10
2秒前
ysysljj应助沉默的莞采纳,获得10
2秒前
2秒前
hb完成签到,获得积分10
3秒前
123456完成签到,获得积分10
3秒前
傻傻的咖啡豆完成签到,获得积分10
4秒前
寒冷的眼睛完成签到,获得积分10
4秒前
大大小小完成签到,获得积分10
5秒前
5秒前
溜溜完成签到 ,获得积分10
5秒前
YUE完成签到,获得积分10
5秒前
5秒前
yousen发布了新的文献求助10
6秒前
6秒前
酷波er应助傻傻的咖啡豆采纳,获得10
9秒前
充电宝应助yuan采纳,获得10
9秒前
9秒前
9秒前
DX发布了新的文献求助10
9秒前
荔枝完成签到,获得积分20
10秒前
YW完成签到,获得积分10
10秒前
张元元发布了新的文献求助10
10秒前
11秒前
11秒前
wangchong完成签到 ,获得积分10
11秒前
李健应助wulala采纳,获得10
11秒前
别先生发布了新的文献求助10
12秒前
科研dog发布了新的文献求助10
13秒前
Theprisoners完成签到,获得积分0
13秒前
陈俐俐完成签到,获得积分10
13秒前
偶然847完成签到,获得积分10
13秒前
XDF发布了新的文献求助10
13秒前
14秒前
小余同学发布了新的文献求助10
14秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Beyond The Sentence: Discourse And Sentential Form 500
求 5G-Advanced NTN空天地一体化技术 pdf版 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4069306
求助须知:如何正确求助?哪些是违规求助? 3608138
关于积分的说明 11456035
捐赠科研通 3328655
什么是DOI,文献DOI怎么找? 1829929
邀请新用户注册赠送积分活动 899955
科研通“疑难数据库(出版商)”最低求助积分说明 819745