Interpretable machine learning model for predicting myocardial injury in intensive care unit patients using SHapley Additive exPlanations analysis

医学 重症监护室 逻辑回归 队列 回顾性队列研究 机器学习 急诊医学 内科学 计算机科学
作者
Xiaojiang Liu,Guanyang Chen,Chenxiao Hao,Youzhong An,Huiying Zhao
出处
期刊:Science Progress [SAGE Publishing]
卷期号:108 (3): 368504251370452-368504251370452
标识
DOI:10.1177/00368504251370452
摘要

Objective The identification of myocardial injury in the intensive care unit (ICU) has received little attention from researchers. Therefore, this retrospective cohort study aimed to develop a machine-learning model to predict the occurrence of myocardial injury in the ICU. Methods Based on the Clinical Research Data Platform of Peking University People's Hospital, we enrolled adult, non-cardiac surgical, and non-obstetric patients who were admitted to the ICU between 2012 and 2022. Logistic regression, random forest, LASSO regression, support vector machine and extreme gradient boosting (XGBoost) models were developed to predict myocardial injury. Results Data from 7453 non-cardiac surgery adult patients in ICU were collected in the derivation cohort (myocardial injury group: 2161 [29%], non-myocardial injury group: 5292 [71%]). Among the five models, the XGBoost model (area under the curve = 0.779; accuracy = 0.781) exhibited the best predictive performance for myocardial injury and the results were explained by the SHapley Additive exPlanations analysis. The top six features of the XGBoost model were maximal heart rate, respiratory rate, temperature, minimal heart rate, age and plasma transfusion. Conclusion This machine-learning model, developed using the XGBoost algorithm, could be a valuable tool for clinical decision-making and detecting myocardial injury in the ICU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ni发布了新的文献求助10
1秒前
1秒前
eric发布了新的文献求助20
1秒前
霡霂发布了新的文献求助10
2秒前
武大聪明丶完成签到,获得积分10
2秒前
2秒前
欢喜烧鹅完成签到,获得积分10
3秒前
Owen应助kerguelen采纳,获得30
4秒前
4秒前
无名发布了新的文献求助30
5秒前
6秒前
小张完成签到,获得积分10
6秒前
共享精神应助yuanyueyue采纳,获得30
8秒前
8秒前
安静的水完成签到,获得积分10
8秒前
CaiBangrong完成签到,获得积分10
9秒前
风清扬应助Mefhitos采纳,获得30
9秒前
Dean发布了新的文献求助10
11秒前
12秒前
大个应助dosungnie采纳,获得10
12秒前
可爱的函函应助lxg采纳,获得10
12秒前
李健的小迷弟应助lcj1014采纳,获得10
13秒前
15秒前
15秒前
华无心完成签到 ,获得积分10
16秒前
17秒前
17秒前
追风发布了新的文献求助10
17秒前
CipherSage应助是真的不吃鱼采纳,获得10
17秒前
吨吨完成签到,获得积分10
17秒前
zhang完成签到 ,获得积分10
17秒前
18秒前
cobo完成签到,获得积分10
18秒前
20秒前
小情绪发布了新的文献求助10
21秒前
21秒前
21秒前
正正发布了新的文献求助30
23秒前
风趣尔冬完成签到,获得积分10
24秒前
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208491
求助须知:如何正确求助?哪些是违规求助? 4386000
关于积分的说明 13659449
捐赠科研通 4244993
什么是DOI,文献DOI怎么找? 2329043
邀请新用户注册赠送积分活动 1326831
关于科研通互助平台的介绍 1279056