电合成
杂原子
钯
材料科学
过氧化氢
阳离子聚合
无机化学
兴奋剂
碳纤维
氢
电化学
催化作用
光化学
有机化学
高分子化学
化学
物理化学
电极
复合材料
复合数
光电子学
戒指(化学)
作者
Guilherme V. Fortunato,Alexander Gunnarson,Hannaneh Hosseini,Xiangyu You,Pallabi Bhuyan,Jisik Choi,Hyo Sang Jeon,Xingju Zhao,Júlio César Lourenço,Sumin Lim,Huize Wang,Ana Guilherme Buzanich,Martin Radtke,Paul Paciok,Marcos R.V. Lanza,Ferdi Schüth,Marc Ledendecker
标识
DOI:10.1002/adfm.202516600
摘要
Abstract Single‐atom catalysts (SACs) offer significant potential for the sustainable electrosynthesis of hydrogen peroxide (H 2 O 2 ) via the two‐electron oxygen reduction reaction (2e − ORR). However, their practical deployment is hindered by challenges related to limited operational stability and intricate synthetic procedures. Here, a family of cationic Pd single‐atom complexes anchored on nitrogen‐, sulfur‐, and dual N,S‐doped hollow carbon spheres (HCS) is reported, prepared via mild vapor‐phase doping combined with wet impregnation of Pd(acac) 2 . Systematic tuning of the heteroatom environment enables precise control over the Pd electronic state and local coordination, enhancing selectivity and long‐term stability under acidic, peroxide‐rich conditions. Operando ICP‐MS and advanced spectroscopy reveal that sulfur‐doping induces favorable charge redistribution, reinforcing Pd–support interactions and suppressing demetallation, while nitrogen doping enhances ORR activity. Notably, dual N,S‐co‐doping achieves a synergistic balance between catalytic performance and stability. This strategy offers a rational design framework for robust ligand‐containing SACs, advancing sustainable electrocatalytic technologies well beyond H 2 O 2 synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI