Automatic detection and prediction of epileptic EEG signals based on nonlinear dynamics and deep learning: a review

脑电图 人工智能 计算机科学 深度学习 动力学(音乐) 非线性系统 癫痫 模式识别(心理学) 癫痫发作 机器学习 神经科学 心理学 物理 教育学 量子力学
作者
Shujun Tan,Zhen Tang,Qiang He,Ying Wai Li,Yuliang Cai,Jiawei Zhang,Di Fan,Zhenkai Guo
出处
期刊:Frontiers in Neuroscience [Frontiers Media]
卷期号:19
标识
DOI:10.3389/fnins.2025.1630664
摘要

Epilepsy is a neurological disorder affecting ~50 million patients worldwide (30% refractory cases) with complex dynamical behavior governed by nonlinear differential equations. Seizures severely impact patients' quality of life and may lead to serious complications. As a primary diagnostic tool, electroencephalography (EEG) captures brain dynamics through non-stationary time series with measurable chaotic and fractal properties. However, EEG signals are highly nonlinear and non-smooth, and conventional linear analysis methods limited by Fourier spectral decomposition cannot capture the inherent phase space dispersion and multifractal geometries of epileptic signals. In recent years, nonlinear dynamics methods such as chaos theory, fractal analysis, and entropy computation have provided new perspectives for EEG signal analysis, while deep learning approaches like convolutional neural networks and long short-term memory networks further enhance the robustness of dynamical pattern recognition through end-to-end nonlinear feature extraction. These methods reveal dynamic patterns in signals, thereby substantially improving epilepsy detection and prediction accuracy. This survey reviews research progress in automatic detection and prediction of epileptic EEG signals based on nonlinear dynamics and deep learning, evaluating key techniques including Lyapunov exponents, fractal dimensions, and entropy metrics. Results highlight three paradigm shifts, including the demonstrated superiority of nonlinear features in capturing preictal transitions, the critical role of attention mechanisms in processing long-range dependencies, and the significant advantages achieved by integrating nonlinear attributes with deep learning architectures for cross-patient generalization and noise suppression. Furthermore, this survey identifies persistent challenges including clinical translation barriers, algorithm performance trade-offs, and feature extraction/selection limitations. It emphasizes the need to integrate algebraic topology and graph convolutional deep learning to address multiscale dynamics, and proposes a unified framework for regulatory-compliant clinical translation that bridges the gap between research innovations and real-world clinical deployment, while outlining future research priorities focused on multimodal data fusion and regulatory-compliant validation frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏xia发布了新的文献求助10
刚刚
Luckqi6688完成签到,获得积分10
1秒前
3秒前
4秒前
4秒前
隐形曼青应助哈哈Steven采纳,获得10
4秒前
fxh完成签到,获得积分10
5秒前
JieYin发布了新的文献求助10
5秒前
5秒前
lezbj99发布了新的文献求助10
5秒前
5秒前
5秒前
充电宝应助吉吉采纳,获得30
6秒前
NexusExplorer应助Wang采纳,获得10
7秒前
9秒前
阿帆发布了新的文献求助10
9秒前
李是谁啊完成签到 ,获得积分10
9秒前
dingzifw完成签到,获得积分10
10秒前
pp发布了新的文献求助10
10秒前
10秒前
Lune7完成签到 ,获得积分10
12秒前
大恐龙发布了新的文献求助10
12秒前
13秒前
13秒前
所所应助七大洋的风采纳,获得10
14秒前
黄小北发布了新的文献求助10
15秒前
我是老大应助平淡的思真采纳,获得10
17秒前
十you八九发布了新的文献求助10
19秒前
19秒前
明明发布了新的文献求助10
20秒前
大方的寒烟完成签到,获得积分10
20秒前
20秒前
麦麦发布了新的文献求助10
20秒前
23秒前
23秒前
Meyako应助积极以云采纳,获得20
25秒前
25秒前
浮光掠影发布了新的文献求助10
26秒前
黄晨雅完成签到,获得积分10
26秒前
蔡一完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4580110
求助须知:如何正确求助?哪些是违规求助? 3998280
关于积分的说明 12378387
捐赠科研通 3672683
什么是DOI,文献DOI怎么找? 2024040
邀请新用户注册赠送积分活动 1058143
科研通“疑难数据库(出版商)”最低求助积分说明 944885