壁画
特征(语言学)
GSM演进的增强数据速率
计算机科学
转化(遗传学)
融合
人工智能
模式识别(心理学)
化学
艺术
绘画
语言学
哲学
生物化学
视觉艺术
基因
作者
Xianke Zhou,Wenjie Deng,Fengran Xie
摘要
ABSTRACT Ancient mural recognition faces unique challenges due to degradation, stylistic variations, and domain‐specific symbolism. We propose a lightweight, edge‐deployable neural architecture search (NAS) framework—SG‐NAS‐MPR—designed for accurate mural pattern recognition. Our framework integrates gated convolutions with frequency‐domain fusion in a structure‐aware module to enhance features under visual noise. A contrast‐aware NAS strategy tailors compact backbones for real‐time inference. Experiments on Dunhuang mural datasets show that our method surpasses existing CNN and NAS models in accuracy (93.4%) and F1‐score (0.922), whereas reducing latency and model size. This work enables efficient and interpretable recognition in cultural heritage computing, supporting mobile museum applications and AR‐based mural analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI