PathBench: Advancing the Benchmark of Large Multimodal Models for Pathology Image Understanding at Patch and Whole Slide Level

水准点(测量) 计算机科学 图像(数学) 人工智能 图像处理 医学影像学 计算机视觉 模式识别(心理学) 地质学 大地测量学
作者
Yuxuan Sun,Hao Wu,Chenglu Zhu,Yixuan Si,Qizi Chen,Yunlong Zhang,Kai Zhang,Jingxiong Li,Jiatong Cai,Yuhan Wang,Lin Sun,Tao Lin,Lin Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3584857
摘要

Rapid advancements in large multimodal models (LMMs) have significantly enhanced their applications in pathology, particularly in image classification, pathology image description, and whole slide image (WSI) classification. In pathology, WSIs represent gigapixel-scale images composed of thousands of image patches. Therefore, both patch-level and WSI-level evaluations are essential and inherently interconnected for assessing LMM capabilities. In this work, we propose PathBench, which comprises three subsets at both patch and WSI levels, to refine and enhance the validation of LMMs. At the patch-level, evaluations using existing multi-choice Q&A datasets reveal that some LMMs can predict answers without genuine image analysis. To address this, we introduce PatchVQA, a large-scale visual question answering (VQA) dataset containing 5,382 images and 6,335 multiple-choice questions designed with distractor options to prevent shortcut learning. These new questions are rigorously validated by professional pathologists to ensure reliable model assessments. At the WSI-level, current efforts primarily focus on image classification tasks and lack diverse validation datasets for multimodal models. To address this, we generate a detailed WSI report dataset through an innovative approach that integrates detailed patch descriptions generated by foundational models into comprehensive WSI reports. These are then combined with physician-written reports corresponding to TCGA WSIs, resulting in WSICap, a detailed report dataset containing 7,000 samples. Based on WSICap, we further develop a WSI-level VQA dataset, WSIVQA, to serve as a validation set for WSI LMMs. Using these PathBench subsets, we conduct extensive experiments to benchmark the performance of state-of-the-art LMMs at both the patch and WSI levels. The proposed dataset is available at https://github.com/superjamessyx/PathBench.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助baosong采纳,获得10
1秒前
moumou完成签到 ,获得积分20
1秒前
温梦花雨完成签到 ,获得积分10
2秒前
英俊的铭应助李子衡采纳,获得10
2秒前
LLL关闭了LLL文献求助
2秒前
warithy应助冰红茶一大杯采纳,获得10
2秒前
大模型应助年糕111采纳,获得10
3秒前
3秒前
sciscisci发布了新的文献求助30
4秒前
4秒前
小番茄完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
SciGPT应助zxx采纳,获得10
5秒前
林洛沁发布了新的文献求助10
5秒前
CodeCraft应助免VVVV免采纳,获得10
5秒前
6秒前
7秒前
hang完成签到,获得积分10
7秒前
温暖芒果发布了新的文献求助10
7秒前
忆夏完成签到,获得积分10
7秒前
7秒前
董四四关注了科研通微信公众号
8秒前
jksg发布了新的文献求助10
9秒前
cherry发布了新的文献求助10
9秒前
1234发布了新的文献求助10
9秒前
moumou关注了科研通微信公众号
9秒前
汉堡包应助wangboxiong采纳,获得10
9秒前
9秒前
9秒前
faizmu完成签到,获得积分10
10秒前
爱吃甜食的懒蛋完成签到 ,获得积分10
10秒前
11秒前
李子衡发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
LIYI发布了新的文献求助10
13秒前
温暖芒果完成签到,获得积分20
14秒前
chicy发布了新的文献求助10
15秒前
南庭完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554292
求助须知:如何正确求助?哪些是违规求助? 4638877
关于积分的说明 14654380
捐赠科研通 4580589
什么是DOI,文献DOI怎么找? 2512383
邀请新用户注册赠送积分活动 1487207
关于科研通互助平台的介绍 1458076