Development and challenges of object detection: A survey

计算机科学 人工智能 对象(语法) 计算机视觉
作者
Zonghui Li,Yongsheng Dong,Longchao Shen,Ya‐Feng Liu,Yuanhua Pei,Haotian Yang,Lintao Zheng,Jinwen Ma
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:598: 128102-128102 被引量:2
标识
DOI:10.1016/j.neucom.2024.128102
摘要

Object detection is a basic vision task that accompanies people's daily lives all the time. The development of object detection technology has experienced an evolution from traditional-based algorithms to deep learning-based algorithms, which has made a qualitative leap in both detection accuracy and detection speed. With the advancement of deep learning, object detection techniques are increasingly becoming a part of everyday life, with the YOLO series of algorithms being extensively applied in various industries. In this paper, we initially present the frequently utilized datasets and evaluation criteria for object detection. Subsequently, we delve into the evolution of traditional object detection algorithms, highlighting two-stage and one-stage approaches through illustrative examples of classical methods. We also conduct a comprehensive summary and analysis of the detection results obtained by these methods. In addition, we introduce object detection applications in daily life, as well as the importance and some difficulties of these applications. Finally, we analyse and summarise the difficulties and challenges facing the task of object detection, and we look forward to the future development direction of object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淇奥完成签到,获得积分10
刚刚
刚刚
科研通AI5应助玉碎星采纳,获得10
4秒前
文献看不懂应助Violet采纳,获得10
4秒前
4秒前
5秒前
mmr完成签到,获得积分10
6秒前
qinqiny完成签到 ,获得积分10
6秒前
BY发布了新的文献求助10
7秒前
7秒前
jenningseastera应助LZX采纳,获得10
10秒前
11秒前
LL关闭了LL文献求助
11秒前
jxx发布了新的文献求助10
11秒前
14秒前
14秒前
万能图书馆应助抹茶肥肠采纳,获得10
16秒前
tian发布了新的文献求助10
17秒前
QR发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
20秒前
科研通AI5应助老木虫采纳,获得10
20秒前
21秒前
sun2发布了新的文献求助10
24秒前
pluto应助学术laji采纳,获得10
25秒前
jenningseastera应助LZX采纳,获得10
27秒前
科研通AI2S应助tian采纳,获得10
28秒前
jenningseastera应助王恒采纳,获得10
29秒前
堀江真夏完成签到 ,获得积分10
29秒前
30秒前
33秒前
jenningseastera应助草木采纳,获得10
34秒前
白许四十完成签到,获得积分10
34秒前
玉碎星发布了新的文献求助10
35秒前
舒适的冰凡完成签到,获得积分10
37秒前
yoasobi2334完成签到,获得积分10
37秒前
jxx完成签到,获得积分10
39秒前
曾淋发布了新的文献求助30
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778099
求助须知:如何正确求助?哪些是违规求助? 3323764
关于积分的说明 10215701
捐赠科研通 3038943
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798368
科研通“疑难数据库(出版商)”最低求助积分说明 758339